
Chapter	13:	Looking	under	the	Hood	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 1	
	

So	far	we	have	identified	the	specific	Seaside	messages	to	create	particular	HTML	constructs	in	an	ad-
hoc	manner	as	needed	for	particular	features.	Now	we	will	attempt	a	more	systematic	approach	by	
looking	at	the	various	pieces	of	an	HTML	document	and	how	Seaside	generates	the	pieces.		

An	HTML	document	consists	of	a	series	of	nested	elements.	An	element	can	be	a	single,	self-closing,	tag	
(such	as	'
'	for	a	line	break)	or	a	pair	of	tags	(such	as	'<h1>Seaside</h1>'	for	a	level-one	heading)	
enclosing	text	and/or	embedded	elements.	Depending	on	the	tag	type,	the	open	tag	may	contain	
attributes	that	further	describe	the	element	(such	as	'GLASS'	where	'href'	is	the	attribute	name	and	the	URL	
is	the	attribute	value).	The	outermost	element	in	an	HTML	document	is	the	'html'	element,	and	it	
contains	one	'head'	and	one	'body'	element.		

The	primary	role	of	any	web	framework	is	to	generate	HTML	pages	to	be	rendered	on	the	user's	
browser.	In	Seaside,	the	HTML	page	is	represented	by	one	or	more	subclasses	of	WAComponent	and	
methods	may	be	implemented	in	the	subclass	to	provide	content	to	both	the	head	and	the	body.		

The	component	adds	content	to	the	page's	head	element	by	implementing	a	method	'updateRoot:'	
which	is	passed	an	instance	of	WAHtmlRoot.	The	head	element	must	contain	a	'title'	element,	so	Seaside	
provides	a	default	of	'Seaside'	that	can	be	overridden	by	sending	'title:'	to	the	object	passed	to	the	
'updateRoot:'	method.	Other	elements	in	the	head	are	optional	and	include	meta	data	and	references	to	
external	CSS	and	JavaScript	files	(using	the	'link'	element).	All	components	have	an	opportunity	to	add	
information	to	the	page's	head	element	before	any	of	the	body	is	rendered.	The	tree	of	components	is	
identified	by	sending	the	message	'children'	to	the	root	component	(so	if	you	fail	to	implement	the	'tree'	
method	and	include	subcomponents,	then	the	subcomponents	will	not	have	an	opportunity	to	
contribute	to	the	head	element).	

The	body	element	is	the	main	place	things	are	displayed	on	a	HTML	document.	A	component	adds	
content	to	the	page's	body	element	by	implementing	a	method	'renderContentOn:'	which	(by	default)	is	
passed	an	instance	of	WARenderCanvas.	The	component	can	add	content	to	the	page	by	sending	
messages	to	the	html	canvas	received	as	an	argument	to	this	method.		

To	add	text	to	a	page,	send	a	string	as	an	argument	with	the	'text:'	message	to	the	html	canvas.	The	
string	will	be	encoded	properly	so	that	special	characters	(such	as	'<'	that	would	otherwise	be	
interpreted	as	the	beginning	of	a	tag)	are	displayed	on	the	browser.	To	add	raw	HTML	code	to	a	page,	
use	the	'html:'	message	to	avoid	any	encoding.	

To	add	an	element	to	a	page,	send	a	unary	message	to	the	html	canvas	identifying	the	element	type	
desired,	and	then	send	messages	to	the	resulting	"brush"	(representing	the	element)	to	(1)	add	
attributes	to	the	element	and	(2)	embed	content	in	the	element.	To	embed	content,	send	the	'with:'	
message	providing	as	an	argument	either	a	block	(that	will	be	evaluated)	or	another	object	(that	will	be	
converted	to	a	string,	by	default	with	'displayString'	via	'greaseString').	For	example,	to	add	an	emphasis	
element	with	the	text	'very'	('very'),	you	could	use	the	following	code.	

canvas emphasis with: 'very'.

Chapter	13:	Looking	under	the	Hood	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 2	
	

As	a	shortcut	for	cases	(like	the	above)	in	which	no	attributes	need	to	be	set,	there	are	a	parallel	set	of	
keyword	messages	that	take	one	argument	that	is	passed	with	the	'with:'	message.	

canvas emphasis: 'very'.

Code	blocks	are	generally	used	as	the	argument	to	a	'with:'	message	to	embed	other	elements	inside	an	
element,	though	you	could,	of	course,	use	a	code	block	where	text	would	be	sufficient.	The	following	is	
equivalent	to	the	above	two	examples.	

canvas emphasis: ['very'].

The	HTML	4.01	Specification	(http://www.w3.org/TR/REC-html40/)	contains	an	index	of	91	elements	
(http://www.w3.org/TR/REC-html40/index/elements.html),	ten	of	which	are	deprecated.	In	Seaside,	
WARenderCanvas	(and	its	superclass,	WAHtmlCanvas)	provides	support	for	most	of	the	non-deprecated	
elements	through	methods	identified	in	the	following	table.	As	you	can	see,	the	Seaside	approach	is	that	
a	full	message	name	is	preferred	over	an	abbreviation.	This	follows	the	general	Smalltalk	philosophy	that	
code	is	more	often	read	than	written	and	spelling	things	out	imposes	less	mental	effort	on	the	reader.	

HTML	Element	Name	 Seaside	Message	 Smalltalk	Class	(if	not	WAGenericTag)	
A	 anchor	 WAAnchorTag	
ABBR	 abbreviated	 	
ACRONYM	 acronym	 	
ADDRESS	 address	 	
BIG	 big	 	
BLOCKQUOTE	 blockquote	 	
BR	 break	 WABreakTag	
BUTTON	 button	 WAButtonTag	
CAPTION	 tableCaption	 	
CITE	 citation	 	
CODE	 code	 	
COL	 tableColumn	 WATableColumnTag	
COLGROUP	 tableColumnGroup	 WATableColumnGroupTag	
DD	 definitionData	 	
DEL	 deleted	 WAEditTag	
DFN	 definition	 	
DIV	 div	 WADivTag	
DL	 definitionList	 	
DT	 definitionTerm	 	
EM	 emphasis	 	
FIELDSET	 fieldSet	 WAFieldSetTag	
FORM	 form	 WAFormTag	
H1	 heading	 WAHeadingTag	
H2	 heading	 WAHeadingTag	
H3	 heading	 WAHeadingTag	
H4	 heading	 WAHeadingTag	
H5	 heading	 WAHeadingTag	

Chapter	13:	Looking	under	the	Hood	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 3	
	

Name	 Seaside	 Description	
H6	 heading	 WAHeadingTag	
HR	 horizontalRule	 WAHorizontalRuleTag	
IFRAME	 iframe	 WAIframeTag	
IMG	 image	 WAImageTag	
INPUT	 cancelButton	

checkbox	
fileUploader	
imageButton	
multiSelect	
passwordInput	
radioButton	
submitButton	
textInput	

WACancelButtonTag	
WACheckboxTag	
WAFileUploadTag	
WAImageButtonTag	
WAMultiSelectTag	
WAPasswordInputTag	
WARadioButtonTag	
WASubmitButtonTag	
WATextInputTag	

INS	 inserted	 WAEditTag	
KBD	 keyboard	 	
LABEL	 label	 WALabelTag	
LEGEND	 legend	 	
LI	 listItem	 	
MAP	 map	 WAImageMapTag	
OBJECT	 object	 WAObjectTag	
OL	 orderedList	 WAOrderedListTag	
OPTION	 option	 WAOptionTag	
OPTGROUP	 optionGroup	 WAOptionGroupTag	
P	 paragraph	 	
PARAM	 parameter	 WAParameterTag	
PRE	 preformatted	 	
Q	 quote	 	
SAMP	 sample	 	
SCRIPT	 script	 WAScriptTag	
SELECT	 select	 WASelectTag	
SMALL	 small	 	
SPAN	 span	 	
STRONG	 strong	 	
SUB	 subscript	 	
SUP	 superscript	 	
TABLE	 table	 	WATableTag	
TBODY	 tableBody	 	
TD	 tableData	 WATableDataTag	
TEXTAREA	 textArea	 WATextAreaTag	
TFOOT	 tableFoot	 	
TH	 tableHeading	 WATableHeadingTag	
THEAD	 tableHead	 	
TR	 tableRow	 	
TT	 teletype	 	
UL	 unorderedList	 WAUnorderedListTag	
VAR	 variable	 	

Chapter	13:	Looking	under	the	Hood	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 4	
	

There	are	several	elements	that	Seaside	does	not	directly	support	(but	could	be	included	using	a	generic	
tag	by	sending	#'tag:').	

• The	following	elements	are	deprecated	in	the	HTML	specification:	applet,	basefont,	center,	dir,	
font,	isindex,	menu,	s	strike,	and	u.	

• The	b	and	i	elements	are	related	to	styling	that	should	be	done	with	CSS.	
• The	following	elements	are	structural	or	appear	only	in	the	head	section	so	are	provided	using	

other	mechanisms:	base,	body,	head,	html,	link,	meta,	style,	and	title.	
• The	remaining	elements	that	have	no	direct	Seaside	support	are	the	following:	area,	bdo,	frame,	

frameset,	noframes,	and	noscript.	

Once	you	have	identified	a	tag	for	an	element,	there	might	be	attributes	to	set	on	that	tag.	The	
following	core	attributes	are	available	on	most	elements	by	sending	a	message	to	the	element	object	
with	a	string	argument:	

• id		(#'id:')	–	a	document-wide	unique	identifier	for	the	element.	Because	Seaside	components	
can	be	embedded	in	other	components,	it	is	generally	not	a	good	idea	to	hard-code	an	
identifier.	When	possible,	send	the	message	#'nextId'	to	the	instance	of	WARenderCanvas	
passed	to	#'renderContentOn:'	in	order	to	get	a	unique	identifier.	Alternatively,	you	can	send	
#'ensureId'	to	a	brush.	

• class	(#'class:')	–	a	space-separated	list	of	class	names.	This	attribute	is	primarily	used	to	
associate	CSS	style	with	an	element.	

• style	(#'style:')	–	a	style	declaration	for	the	element.	It	is	considered	a	better	practice	to	use	an	
external	style	sheet.	

• title	(#'title:')	–	advisory	information	about	the	element.	Visual	browsers	will	often	show	this	as	
a	tool	tip.	

The	following	attributes	are	available	on	most	elements:	

• lang	(#'language:')	–	the	base	language	of	an	element's	attribute	values	and	text	content.		
• dir	(#'direction:')	–	directionality	of	text.	Acceptable	values	are	'ltr'	for	left-to-right	text	and	'rtl'	

for	right-to-left	text.		

The	following	event-related	attributes	can	be	set	on	most	elements	and	will	trigger	a	script	(typically	
JavaScript)	in	the	browser:	

• onclick	(#'onClick:')	–	a	pointer	button	was	clicked.	
• ondblclick	(#'onDoubleClick:')	–	a	pointer	button	was	double	clicked.	
• onmousedown	(#'onMouseDown:')	–	a	pointer	button	was	pressed	down	
• onmouseup	(#'onMouseUp:')	–	a	pointer	button	was	released	
• onmouseover	(#'onMouseOver:')	–	a	pointer	was	moved	onto	
• onmousemove	(#'onMouseMove:')	–	a	pointer	was	moved	within	
• onmouseout			(#'onMouseOut:')	–	a	pointer	was	moved	away	

Chapter	13:	Looking	under	the	Hood	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 5	
	

• onkeypress	(#'onKeyPress:')	–	a	key	was	pressed	and	released	
• onkeydown	(#'onKeyDown:')	–	a	key	was	pressed	down	
• onkeyup	(#'onKeyUp:')	–	a	key	was	released	

Other	attributes	tend	to	be	element-specific	and	can	be	found	in	the	element's	class	(shown	in	the	third	
column	in	the	above	table).	Now	we	will	look	at	some	of	the	various	classes	and	methods	involved	in	the	
many	steps	from	starting	a	web	server	to	accepting	a	HTML	request	on	a	socket	to	sending	an	HTML	
response.		

• The	Seaside	Control	Panel	(one	if	the	three	initial	windows	in	the	Seaside	One-Click	Experience)	
provides	a	graphical	user	interface	over	the	default	instance	(singleton)	of	WAServerManager	
that	manages	a	collection	of	instances	of	subclasses	of	WAServerAdapter.		

• Initially,	there	is	one	adapter,	an	instance	of	WAComancheAdaptor,	which	is	configured	to	listen	
on	port	8080	and	(by	default)	pass	requests	to	the	default	instance	(singleton)	WADispatcher.	

• WAComancheAdaptor>>#'basicStart'	creates	an	HttpService	on	the	provided	port.	
• HttpService>>#'runWhile:'	creates	a	TcpListener	that	calls	back	to	HttpService>>#'value:'	with	

each	newly	accepted	socket.		
• HttpService>>#'serve:'	creates	an	instance	of	HttpAdaptor	and	passes	it	the	socket	and	itself.	
• HttpAdaptor>>#'beginConversation'	reads	from	the	TCP	socket	and	instantiates	an	instance	of	

HttpRequest.	This	request	is	passed	to	HttpAdaptor>>#'dispatchRequest:'	to	get	an	instance	of	
HttpResponse	that	is	returned	on	the	socket.	

• HttpAdaptor>>#'dispatchRequest:'	calls	HttpService>>#'processHttpRequest:'	on	the	instance	
first	created	above	and	it	calls	WAComancheAdaptor>>#'processHttpRequest:'	on	the	instance	
first	created	above.	

• WAComancheAdaptor>>#'processHttpRequest:'	calls	#'process:'	on	itself	with	the	HttpRequest.	
• WAServerAdaptor>>#'process:'	creates	an	instance	of	WARequestContext	(containing	an	

instance	of	WARequest	and	WABufferedResponse).		
• WAServerAdaptor>>#'handleRequest:'	passes	the	instance	of	WARequest	and	to	

WADispatcher>>#'handleRequest:'.	The	result	is	an	instance	of	WAResponse	that	is	converted	to	
an	instance	of	HttpResponse	that	is	eventually	passed	back	to	the	client	browser	as	a	web	page.	

As	described	above,	WAComancheAdaptor	creates	an	instance	of	WARequest	and	passes	it	to	the	
default	WADispatcher	that	is	responsible	for	finding	someone	to	create	a	WAResponse	to	return	to	
WAComancheAdaptor.	

• There	is	a	top-level	dispatcher	returned	by	the	class-side	method,	#'default',	which	selects	an	
instance	of	a	subclass	of	WARequestHandler	to	receive	the	request.	Of	course,	in	order	for	an	
application	to	be	found,	an	instance	of	WAApplication	must	have	been	registered.	This	is	what	is	
done	when	you	send	#'register:asApplicationAt:'	to	WAAdmin	with	your	subclass	of	
WAComponent	and	a	string.	The	string	you	pass	(such	as	'hello')	is	used	to	define	a	path	on	your	
web	server	(such	as	'http://localhost:8080/hello').		

Chapter	13:	Looking	under	the	Hood	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 6	
	

• The	dispatcher	sends	the	instance	of	WARequest	to	WAApplication>>#'handleRequest:'	that	
looks	for	an	instance	of	WASession	to	handle	the	request.	The	lookup	is	done	using	the	'_s'	field	
included	in	the	URL	or	in	a	cookie	(depending	on	a	configuration	setting).	If	the	session	key	is	not	
found	(perhaps	it	expired	and	has	been	removed	from	the	cache),	is	not	provided,	or	has	
expired	then	a	new	session	is	created.	

• WARegistry>>#'dispatch:to:'	calls	WASession>>#'handle:',	which	is	implemented	in	
WARequestHandler	and	eventually	calls	#'handleFiltered:'	on	itself	(an	instance	of	WASession	or	
a	subclass).		

• The	#'handleFiltered:'	method	looks	at	the	passed-in	URL	fields	for	an	'action	key'	(the	one	with	
the	key	'_k').	If	such	a	field	is	found	in	the	request	then	the	value	is	used	as	a	lookup	into	the	
session's	continuation	dictionary.	If	there	is	a	continuation	available	with	the	key,	then	it	is	
evaluated	with	the	request.	We	will	look	more	at	that	below.	First	we	look	at	the	handling	of	an	
initial	request.		

• If	the	request	does	not	include	an	'action	key',	then	the	#'start:'	message	is	sent	to	the	session.	If	
the	request	includes	an	'action	key'	but	there	is	no	continuation	for	that	key,	then	
#'unknownRequest'	is	called	which,	by	default,	calls	#'start:'.	

• WASession>>#'start:'	looks	for	the	application's	configuration	preference	for	a	'mainClass'	(by	
default,	this	is	the	class	WARenderLoopMain)	and	calls	#'start'	on	a	new	instance.		

• WARenderLoopMain>>#'start'	creates	a	new	instance	of	the	application's	
renderPhaseContinuationClass	(by	default,	WARenderPhaseContinuation),	and	sends	
#'initialRequest:'	to	each	visible	presenter	(the	root	component	and	its	children).	This	is	an	
opportunity	to	capture	any	parameters	(e.g.,	to	simulate	a	RESTful	application)	and	redirect	or	
configure	the	initial	page	based	on	these	parameters.	

• Once	the	initialRequest:	messages	have	been	sent,	WARenderLoopMain>>#'start'	calls	
#'captureAndInvoke'	on	the	continuation.	After	some	setup,	
WARenderPhaseContinuation>>#'processRendering:'	creates	the	document	(typically	an	
instance	of	WAHtmlDocument).	

• At	this	#'updateUrl:'	is	sent	to	each	presenter.	This	gives	them	an	opportunity	to	modify	the	
base	URL	used	when	rendering.		

• Next,	#'updateRoot:'	is	sent	to	each	presenter.	This	allows	you	to	customize	the	<head>	element	
of	the	HTML	document.	Typically,	you	would	update	the	title	and	add	CSS	and	JavaScript	links	
here.	

• Finally,	#'renderWithContext:'	is	called	on	the	root-level	component	(the	one	that	was	
registered	as	the	application).	This	uses	WARenderVisitor	to	call	your	component's	
#'renderContentOn:'	method.	

If	the	request	does	not	result	in	#'start:'	being	sent	to	the	session,	then	we	are	dealing	with	a	
continuation	created	by	an	earlier	page.	Let's	walk	through	how	that	continuation	is	created	and	then	
used.	

Chapter	13:	Looking	under	the	Hood	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 7	
	

• When	rendering	an	HTML	document,	one	might	add	an	anchor	element	to	the	page	and	give	the	
anchor	a	callback	by	sending	#'callback:'	to	an	instance	of	WAAnchorTag.	For	example:	

renderLogoutAnchorOn: canvas

 canvas anchor
 callback: [self logout];
 with: 'Logout'.

• Sending	the	#'callback:'	message	will	invoke	WAAnchorTag>>#'callback:'	which	can	be	
refactored	as	follows	to	allow	easier	discussion.	

WAAnchorTag>>#callback: aNiladicValuable

 | callback id |
"4" aNiladicValuable argumentCount > 0 ifTrue: [
"5" GRInvalidArgumentCount signal: 'Anchors expect a niladic callback.'
"6"].
"7" callback := WAActionCallback on: aNiladicValuable.
"8" id := self storeCallback: callback.
"9" self url addField: id.

• Line	4	checks	to	ensure	that	the	block	does	not	expect	any	arguments	and	line	5	provides	an	
error	in	this	case.	

• Line	7	wraps	the	block	in	an	instance	of	WAActionCallback.	
• Line	8	saves	the	callback	in	an	instance	of	WACallbackRegistry	associated	with	the	current	

session	and	returns	a	unique	key.	
• Line	9	adds	the	unique	key	to	the	URL	that	will	be	associated	with	the	anchor	tag.	
• When	the	page	is	rendered,	the	instance	of	WAAnchorTag	will	add	itself	to	the	page	as	an	<a>	

element	with	an	'href'	attribute	of	the	new	URL.	In	the	following	URL,	there	is	a	parameter	'4'	
that	can	be	used	to	find	the	WAActionCallback	holding	the	block.	

http://localhost:8080/boquitas?_s=cDBBHwMjSSQFwGAD&_k=8k2j2bSW&4

• When	the	user	clicks	on	the	anchor	an	HTTP	GET	request	is	submitted	to	the	server.	The	server	
dispatches	it	to	the	application	registered	with	the	name	'boquitas'.	The	application	then	looks	
for	a	session	with	the	key	'cDBBHwMjSSQFwGAD'	and	passes	the	request	to	the	session.	The	
session	then	looks	for	a	'continuation'	with	the	key	'8k2j2bSW'	and	passes	the	request	to	the	
instance	of	WAActionPhaseContinuation	built	during	the	earlier	page	rendering.	

• WAActionPhaseContinuation>>#'runCallbacks'	then	invokes	WACallbackRegistry>>#'handle:'	to	
find	and	evaluate	the	appropriate	callbacks	based	on	the	unique	key	added	to	the	URL.	

To	learn	more	about	this	process,	select	one	of	the	methods	listed	above	and	add	'self	halt.'	to	the	code.		

