
Chapter	12:	Supporting	User	Login	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 1	
	

Many	web	sites	and	web	applications	limit	access	based	on	a	user.	We	will	demonstrate	this	
functionality	by	identifying	some	functionality	that	is	available	only	to	registered	users.	

1. Create	a	class	to	model	the	user.		

a. Create	the	LBUser	class	with	an	id,	a	name,	and	a	password.	

Object subclass: #LBUser
 instanceVariableNames: 'id name password'
 classVariableNames: ''
 category: 'LosBoquitas'

b. Create	accessors	using	the	class	refactoring	menu	(accepting	all	the	proposed	new	
methods).	Note	that	one	of	the	created	methods	is	‘name1’	(to	return	the	‘name’	
instance	variable).	This	happened	because	there	was	already	a	‘name’	method	(here	it	
happens	to	be	in	a	superclass),	and	the	refactoring	tool	did	not	want	to	override	the	
existing	method.	We	do	want	to	override	the	method,	so	add	a	‘name’	method.		

name

 ^ name.

c. To	remove	the	‘name1’	method,	select	‘name1’	in	the	method	list,	right-click,	and	select	
‘remove	method…’.	If	there	are	any	senders	of	‘name1’	you	will	be	asked	to	confirm	the	
delete.	

d. In	general,	it	is	considered	a	poor	practice	to	store	passwords.	Instead,	applications	
should	store	some	sort	of	one-way	encryption	of	the	password.	To	do	this,	modify	the	
‘password:’	method	that	was	generated	so	that	instead	of	storing	the	passed-in	string,	
we	store	a	hash	of	the	string.	This	is	(only)	a	little	bit	more	secure	than	a	free-text	string.	

password: anObject

 password := anObject hash.

e. Add	a	method	to	verify	passwords.	

verifyPassword: aString

 ^aString hash = password.

f. Add	a	method	to	initialize	the	values	of	the	instance	variables.	

initialize

 super initialize.
 id := ''.
 name := ''.
 password := 0.

Chapter	12:	Supporting	User	Login	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 2	
	

g. Add	a	method	to	support	sorting.	

<= aUser

 ^self id <= aUser id.

h. Define	a	class	instance	variable	to	hold	a	cache	of	users	(this	is	similar	to	what	we	did	on	
LBEvent	to	cache	events).	Make	sure	that	LBUser	is	selected,	and	then	click	on	the	‘class’	
button	below	the	class	list.	This	will	replace	the	class	definition	with	a	place	to	define	
class	instance	variables.		

LBUser class
 instanceVariableNames: 'users'

i. Add	the	following	class-side	method	to	return	the	user	list.	

users

 users isNil ifTrue: [
 users := IdentitySet with: (self new
 id: 'admin';
 name: 'Site Administrator';
 password: 'passwd';
 yourself).
].
 ^users.

j. Add	the	following	class-side	method	to	lookup	a	user.	

userWithID: idString password: passwordString

 ^self users
 detect: [:each | each id = idString and:
 [each verifyPassword: passwordString]]
 ifNone: [nil].

2. In	LBMain	class>>#’initialize’	(the	initialize	method	on	the	class-side	of	LBMain)	we	define	our	
application	to	use	WASession.	This	is	an	object	that	holds	various	session	information	that	is	
available	to	all	components.	We	would	like	to	hold	a	user	as	part	of	the	session,	so	we	will	
create	a	subclass	that	has	an	additional	instance	variable.	

a. Define	LBSession	with	‘user’	as	an	instance	variable.	

WASession subclass: #LBSession
 instanceVariableNames: 'user'
 classVariableNames: ''
 category: 'LosBoquitas'

b. Create	instance	variable	accessors	using	the	class	refactoring	menu.	

c. Modify	LBMain	class>>initialize	to	use	this	new	session	class.	

Chapter	12:	Supporting	User	Login	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 3	
	

initialize
"
 LBMain initialize.
"
 super initialize.
 (self registerAsApplication: 'boquitas')
 preferenceAt: #sessionClass put: LBSession;
 yourself.

d. Initialize	LBMain	so	that	it	uses	the	new	class.	You	can	click	anywhere	on	the	third	line	of	
the	method	which	contains	the	LBMain	initialize	comment	and	press	<Ctrl>+<d>	(for	
‘do-it’).		

3. Create	a	login	component	that	we	can	use.	

a. Create	a	class	‘LBLoginComponent’	with	two	instance	variables,	‘userID’	and	‘password.’	

WAComponent subclass: #LBLoginComponent
 instanceVariableNames: 'userID password'
 classVariableNames: ''
 category: 'LosBoquitas'

b. Add	a	render	method	to	show	that	it	is	being	called.	

renderContentOn: html

 html heading: self class name.

Chapter	12:	Supporting	User	Login	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 4	
	

4. Refactor	LBMain>>#’renderSidebarOn:’	so	that	we	have	more	small	methods	rather	than	a	few	
large	methods.	This	is	a	much-favored	practice	in	the	Smalltalk	community.	

a. Select	the	four	lines	of	code	defining	the	home	anchor	in	the	class	‘LBMain’	and	the	
method	#’renderSidebarOn:’.	Right-click	after	selecting	the	code	and	select	‘refactor	
source’	and	then	‘extract	method.’	

	

b. This	will	pop	up	a	dialog	asking	for	a	new	name	for	the	method.	Enter	
‘renderHomeAnchorOn:	html’	as	the	text	and	click	‘OK’	or	press	<Enter>.	

	

c. This	will	show	a	Changes	dialog	on	the	ExtractMethodRefactoring	where	you	can	see	
two	methods	involved.	One	is	a	new	method	(‘renderHomeAnchorOn:’)	and	the	other	is	
a	modified	method	(‘renderSideBarOn:’).	If	you	select	the	modified	method	you	can	see	
the	current	code	(in	red	type)	and	code	that	will	be	installed	if	you	click	the	‘accept’	

Chapter	12:	Supporting	User	Login	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 5	
	

button	(in	green).	Note	that	the	refactoring	will	change	the	formatting	somewhat	and	
overstates	the	extent	of	the	changes.	Go	ahead	and	click	‘accept’.	

	

d. In	a	similar	manner,	extract	the	‘Events’-link	creation	code.	Note	that	the	refactoring	
changed	the	placement	of	the	square	brackets	in	the	method.	This	means	that	we	can	
no	longer	select	full	lines,	but	must	select	through	the	‘yourself’	but	not	the	closing	
square	bracket.	Extract	this	code	into	a	new	method	named	‘renderEventsAnchorOn:	
html’	and	accept	the	changes.	

	

	

Chapter	12:	Supporting	User	Login	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 6	
	

5. Add	a	‘Login’	anchor.	

a. First,	edit	‘renderEventsAnchorOn:’	to	add	a	break	at	the	end	so	that	subsequent	
elements	are	on	a	new	line.	

renderEventsAnchorOn: html

 html anchor
 callback: [mainArea := LBScheduleComponent new];
 with: 'Events'.
 html break.

b. Next,	create	a	new	method	very	similar	to	the	above	to	render	the	login	link.	

renderLoginAnchorOn: html

 html anchor
 callback: [mainArea := LBLoginComponent new];
 with: 'Login'.
 html break.

c. Finally,	modify	‘renderSidebarOn:’	to	call	our	new	method	(and	get	back	our	
formatting).	

renderSidebarOn: html

 html div
 id: 'sidebar';
 class: 'section';
 with: [
 html heading
 level2;
 with: 'Menu'.
 self
 renderHomeAnchorOn: html;
 renderEventsAnchorOn: html;
 renderLoginAnchorOn: html;
 yourself.
].

d. In	a	web	browser,	navigate	to	the	application	and	note	the	new	link.	Clicking	on	the	link	
should	show	the	login	component.	

Chapter	12:	Supporting	User	Login	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 7	
	

6. Add	a	login	form	to	the	login	component.	

a. Add	various	render	methods	to	LBLoginComponent.	Note	that	we	can	set	focus	to	a	
particular	field	using	explicit	JavaScript.	It	would	be	more	elegant	to	use	a	library	(such	
as	jQuery),	but	this	demonstrates	the	general	capability.	

renderUserOn: html

 | htmlID |
 html div: [
 html label
 for: (htmlID := html nextId);
 with: 'User:'.
 html textInput
 id: htmlID;
 value: userID;
 callback: [:value | userID := value];
 script: 'document.getElementById(' ,
 htmlID printString , ').focus()';
 yourself.
].

	

renderPasswordOn: html

 | htmlID |
 html div: [
 html label
 for: (htmlID := html nextId);
 with: 'Password:'.
 html passwordInput
 id: htmlID;
 value: password;
 callback: [:value | password := value];
 yourself.
].

	

warning

 self session user notNil ifTrue: [
 ^'Logged in as ' , self session user name.
].
 (userID isNil or: [userID isEmpty]) ifTrue: [
 ^'Please enter User ID and Password'.
].

 ^'Login failed!'.

Chapter	12:	Supporting	User	Login	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 8	
	

	

renderWarningOn: html

 html div: [
 html
 span: '';
 span: self warning;
 yourself.
].

	

renderSubmitOn: html

 html div: [
 html submitButton
 callback: [self login];
 with: 'Login'.
].

	

renderFormOn: html

 html form
 class: 'loginForm';
 with: [
 self
 renderUserOn: html;
 renderPasswordOn: html;
 renderWarningOn: html;
 renderSubmitOn: html;
 yourself.
].

	

renderContentOn: html

 self renderFormOn: html.

b. Return	to	the	web	browser	and	click	the	‘Login’	link.	Note	that	the	formatting	is	not	
quite	right	since	the	text	entry	fields	are	not	aligned.		

Chapter	12:	Supporting	User	Login	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 9	
	

c. Edit	LBFileLibrary>>#’boquitasCss’	so	that	the	lines	beginning	with	‘.eventEditor’	now	
begin	with	‘form’	(referring	to	the	element	rather	than	the	class).	In	this	way	CSS	applies	
to	both	forms.	

form { display: table; }
form > div { display: table-row; }
form > div > * { display: table-cell; }
form textarea { height: 4em; width: 40em; }
form div.hidden { display: none; }

d. Refresh	the	browser	and	note	that	the	fields	are	now	aligned	in	a	table	layout.	

e. Clicking	the	‘Login’	button	should	give	an	error	since	the	‘login’	method	is	not	yet	
implemented.	Add	the	following	method	to	LBLoginComponent.	

login

 | user |
 user := LBUser
 userWithID: userID
 password: password.
 self session user: user.
 user notNil ifTrue: [
 userID := nil.
 password := nil.
].

f. Now	try	the	application	again.	If	you	give	a	wrong	user	ID/password,	you	should	get	a	
message	displayed	with	that	information.	If	you	give	a	correct	user	ID/password	
(‘admin’	and	‘passwd’),	you	should	get	a	message	identifying	the	logged	in	user.	

g. Modify	‘renderContentOn:’	so	that	if	a	user	is	logged	in	we	do	not	display	the	login	
form.	

renderContentOn: html

 self session user isNil ifTrue: [
 self renderFormOn: html.
] ifFalse: [
 html heading: 'Welcome, ' , self session user name.
].

Chapter	12:	Supporting	User	Login	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 10	
	

7. Modify	LBMain	to	handle	the	presence	of	a	session	user.	

a. Instead	of	always	rendering	a	login	link,	we	need	an	alternative.	Add	a	
‘renderLogoutOn:’	method.	

renderLogoutAnchorOn: html

 html anchor
 callback: [self session user: nil];
 with: 'Logout ' , self session user name.

b. Modify	the	‘renderLoginAnchorOn:’	method	to	remove	the	break	at	the	end.	

renderLoginAnchorOn: html

 html anchor
 callback: [mainArea := LBLoginComponent new];
 with: 'Login'.

c. Create	a	‘renderUserOn:’	method	that	will	call	one	or	the	other	of	the	above	methods.	

renderUserOn: html

 self session user isNil ifTrue: [
 self renderLoginAnchorOn: html.
] ifFalse: [
 self renderLogoutAnchorOn: html.
].
 html break.

d. Modify	the	‘renderSidebarOn:’	method	so	that	it	calls	the	‘renderUserOn:’	method	
instead	of	the	‘renderLoginAnchorOn:’	method.	

renderSidebarOn: html

 html div
 id: 'sidebar';
 class: 'section';
 with: [
 html heading
 level2;
 with: 'Menu'.
 self
 renderHomeAnchorOn: html;
 renderEventsAnchorOn: html;
 renderUserOn: html;
 yourself.
].

e. Try	the	application	with	various	combinations	of	correct	and	incorrect	passwords.	

Chapter	12:	Supporting	User	Login	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 11	
	

8. Restrict	some	features	to	logged-in	users.	

a. Modify	LBScheduleComponent>>#renderContentOn:	as	follows:	

renderContentOn: html

 listComponent rows: LBEvent events asSortedCollection.
 html render: listComponent.
 self session user notNil ifTrue: [
 html anchor
 callback: [self add];
 with: 'Add'.
].

b. Try	the	application	when	logged	in	and	when	not	logged	in.	The	‘Add’	link	should	appear	
and	disappear	based	on	the	user	state.	

c. Modify	LBScheduleComponent>>#initialize	as	follows:	

initialize

 | columns |
 super initialize.
 columns := OrderedCollection new
 add: self whoReportColumn;
 add: self whatReportColumn;
 add: self whenReportColumn;
 add: self whereReportColumn;
 yourself.
 self session user notNil ifTrue: [
 columns add: self actionReportColumn.
].
 listComponent := WATableReport new
 columns: columns;
 rowPeriod: 1;
 yourself.

d. Try	the	application	when	logged	in	and	when	not	logged	in.	The	‘delete’	link	should	
appear	and	disappear	based	on	the	user	state.	

Chapter	12:	Supporting	User	Login	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 12	
	

9. Change	the	window	title	based	on	the	subcomponent	being	viewed.	

a. As	we	discovered	in	chapter	4,	the	#updateRoot	method	provides	a	way	to	set	the	title	
of	the	web	browser	window	(and/or	tab)	to	something	appropriate	for	the	page	being	
displayed.	Now	we	have	a	main	component	(LBMain)	and	three	subcomponents	
(LBHome,	LBLoginComponent,	and	LBScheduleComponent).	Add	
LBHome>>#updateRoot	as	follows:	

updateRoot: anHtmlRoot

 super updateRoot: anHtmlRoot.
 anHtmlRoot title: anHtmlRoot title , ' -- Home'.

b. Add	LBLoginComponent>>#updateRoot	as	follows:	

updateRoot: anHtmlRoot

 super updateRoot: anHtmlRoot.
 anHtmlRoot title: anHtmlRoot title , ' -- Login'.

c. Add	LBScheduleComponent>>#updateRoot	as	follows:	

updateRoot: anHtmlRoot

 super updateRoot: anHtmlRoot.
 anHtmlRoot title: anHtmlRoot title , ' -- Event'.

d. Try	navigating	to	the	various	subcomponents	and	observe	that	the	title	does	not	
change.	This	is	because	Seaside	is	rendering	the	page	head	element	(which	contains	the	
page	title	element)	before	it	discovers	what	components	will	be	included	in	the	page	
which	are	in	the	page	body	element.	To	provide	a	solution	to	this	problem,	Seaside	
inquires	of	each	component	for	a	list	of	‘children’	before	it	starts	rendering.	This	allows	
the	subcomponents	to	participate	more	fully	in	preparing	the	page.	Add	
LBMain>>#children	as	follows:	

children

 ^super children , (Array with: mainArea).

e. Now	try	navigating	to	the	various	subcomponents	and	observe	that	the	title	does	
change	to	match	the	current	subcomponent.		

While	the	#children	method	is	not	necessary	to	process	callbacks	in	Seaside	3.0	(as	it	
was	in	earlier	version	of	Seaside),	it	is	considered	good	practice	to	do	so.	The	absence	of	
the	#children	method	can	cause	subtle	errors	where	components	are	displayed	but	
seem	to	be	ignored	for	some	purposes.	

10. Save	your	Pharo	image.	

