
Chapter	11:	Creating	a	Form	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 1	
	

In	this	chapter	we	look	at	creating	an	HTML	form	element	to	collect	information	from	the	user.	

1. Define	a	new	component	to	edit	events.	

WAComponent subclass: #LBEventEditor
 instanceVariableNames: 'model'
 classVariableNames: ''
 category: 'LosBoquitas'

a. Add	a	render	method	to	show	that	we	are	displaying	the	component.	

renderContentOn: html

 html heading: self class name.

b. Create	an	initialize	method	on	the	instance	side.	

initialize: anEvent

 self initialize.
 model := anEvent.

c. Now	create	an	instance	creation	method	on	the	class	side.	Note	that	we	are	calling	
‘basicNew’	rather	than	‘new.’	This	is	because	‘new’	would	call	‘initialize’	on	the	instance,	
and	we	want	to	call	‘initialize:’	explicitly	and	let	it	call	‘initialize.’		

on: anEvent

 ^self basicNew
 initialize: anEvent;
 yourself.

2. Now	we	can	return	to	the	LBScheduleComponent	and	arrange	to	call	our	new	editor.	

a. Add	an	‘edit:’	method	to	the	instance	side	of	LBScheduleComponent.	

edit: anEvent

 | editor answer |
 editor := LBEventEditor on: anEvent.
 answer := self call: editor.
 answer
 ifTrue: [self inform: 'Edits were saved']
 ifFalse: [self inform: 'Edits were cancelled'].

Chapter	11:	Creating	a	Form	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 2	
	

b. Modify	LBScheduleComponent	>>#’whatReportColumn’	so	that	the	column	has	a	click	
block.	Note	that	since	we	have	the	column	definition	in	its	own	method	we	don’t	have	
to	modify	a	large	initialize	method.	

whatReportColumn

 ^WAReportColumn new
 title: 'What';
 selector: #what;
 clickBlock: [:each | self edit: each];
 yourself.

c. In	your	web	browser,	click	on	the	<Events>	link	to	show	that	the	‘what’	field	as	a	link.	
Click	on	any	row	and	see	that	the	schedule	list	is	replaced	with	the	event	editor	
component	(which	simply	displays	some	text).	

3. Add	true	editing	to	the	editor.	

a. Modify	LBEventEditor>>#renderContentOn:	to	lay	out	a	table	with	headings	and	input	
fields.	(Yes,	we	are	using	a	table	for	formatting;	the	next	step	will	refactor	this	method	
to	avoid	using	a	table.)	Note	that	for	this	first	round	we	are	using	only	text	fields	so	have	
set	the	‘when’	field	to	be	read	only.	

renderContentOn: html

 html form: [
 html table: [
 html tableBody: [
 html tableRow: [
 html tableHeading: 'Who:'.
 html tableData: [
 html textInput
 value: model who;
 callback: [:value | model who: value].
].
].
 html tableRow: [
 html tableHeading: 'What:'.
 html tableData: [
 html textInput
 value: model what;
 callback: [:value | model what: value].
].
].
 html tableRow: [
 html tableHeading: 'When:'.
 html tableData: [
 html textInput
 value: model when printString;

Chapter	11:	Creating	a	Form	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 3	
	

 yourself.
].
].
 html tableRow: [
 html tableHeading: 'Where:'.
 html tableData: [
 html textInput
 value: model where;
 callback: [:value | model where: value].
].
].
 html tableRow: [
 html tableData: [
 html cancelButton
 callback: [self answer: false];
 with: 'Cancel'.
].
 html tableData: [
 html submitButton
 callback: [self answer: true];
 with: 'Save'.
].
].
].
].
].

b. Try	this	component	in	your	web	browser.	It	should	be	possible	to	edit	the	fields	and	
save	or	cancel	the	edits.	Cancelled	edits	should	not	be	persisted.	

c. Note	how	a	table	is	used	to	lay	out	the	form.	Historically,	this	was	a	fairly	typical	
approach	because	it	allows	labels	and	data	entry	fields	to	be	positioned	relatively	nicely.	
More	recently	the	recommendation	has	been	to	use	CSS	rather	than	tables	to	handle	
layout	(see	http://en.wikipedia.org/wiki/Tableless_web_design).	We	tackle	that	
challenge	next.	

Chapter	11:	Creating	a	Form	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 4	
	

4. Refactor	the	editing	to	avoid	the	use	of	a	table.	

a. Add	small	methods	to	edit	each	field.		

renderWhoOn: html

 | tagID |
 html div: [
 html label
 for: (tagID := html nextId);
 with: 'Who:'.
 html textInput
 id: tagID;
 value: model who;
 callback: [:value | model who: value].
].

	

renderWhatOn: html

 | tagID |
 html div: [
 html label
 for: (tagID := html nextId);
 with: 'What:'.
 html textInput
 id: tagID;
 value: model what;
 callback: [:value | model what: value].
].

	

renderWhenOn: html

 | tagID |
 html div: [
 html label
 for: (tagID := html nextId);
 with: 'When:'.
 html textInput
 id: tagID;
 value: model when;
 yourself.
].

	

Chapter	11:	Creating	a	Form	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 5	
	

renderWhereOn: html

 | tagID |
 html div: [
 html label
 for: (tagID := html nextId);
 with: 'Where:'.
 html textInput
 id: tagID;
 value: model where;
 callback: [:value | model where: value].
].

	

renderButtonsOn: html

 html div: [
 html cancelButton
 callback: [self answer: false];
 with: 'Cancel'.
 html submitButton
 callback: [self answer: true];
 with: 'Save'.
].

b. Modify	‘renderContentOn:’	to	call	the	new	methods.	

renderContentOn: html

 html form
 class: 'eventEditor';
 with: [
 self
 renderWhoOn: html;
 renderWhatOn: html;
 renderWhenOn: html;
 renderWhereOn: html;
 renderButtonsOn: html;
 yourself.
].

c. View	this	in	a	browser	and	observe	that	the	layout	has	each	<div>	element	on	a	new	
line.	Now	we	can	edit	the	CSS	to	make	this	a	bit	more	fancy.	Add	the	following	lines	to	
the	text	in	LBFileLibrary>>#’boquitasCss’	inside	the	existing	string	(i.e.,	after	the	first	
single	quote	character	and	before	the	last	single	quote	character).	

.eventEditor { display: table; }

.eventEditor > div { display: table-row; }

.eventEditor > div > * { display: table-cell; }

Chapter	11:	Creating	a	Form	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 6	
	

d. Refresh	the	page	in	your	web	browser,	and	note	that	the	positioning	is	now	controlled	
by	the	CSS.	We	have	separated	the	text	markup	(HTML)	from	the	style	(CSS).	This	is	
considered	a	much	better	way	to	build	web	sites,	but	does	rely	on	some	CSS	features	
that	might	not	be	supported	in	older	browsers.	For	example,	Internet	Explorer	7	(and	
earlier)	does	not	recognize	table	formatting.		

Of	course,	once	we	start	down	the	path	of	separating	content	from	style	we	need	to	
learn	CSS	and	how	it	interacts	with	HTML.		

e. Notice	that	the	label	width	is	unusually	wide.	It	turns	out	that	this	is	because	the	
buttons	in	the	fifth	row	are	lumped	together	in	the	first	column.	

	

	

f. To	move	the	buttons	to	the	second	column,	add	an	empty	label	before	the	buttons.	

renderButtonsOn: html

 html div: [
 html label: [html space].
 html cancelButton
 callback: [self answer: false];
 with: 'Cancel'.
 html submitButton
 callback: [self answer: true];
 with: 'Save'.
].

g. We	intended	that	each	element	inside	a	div	inside	the	eventEditor	would	be	treated	as	a	
table-cell.	It	turns	out	that	the	CSS	specification	(see	
http://www.w3.org/TR/CSS21/conform.html#conformance)	allows	browsers	to	ignore	

Chapter	11:	Creating	a	Form	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 7	
	

CSS	properties	for	form	controls	(including	input	fields	like	buttons):	“CSS	2.1	does	not	
define	which	properties	apply	to	form	controls	and	frames,	or	how	CSS	can	be	used	to	
style	them.”	

h. If	you	want	the	buttons	to	be	in	separate	columns,	enclose	them	in	another	element,	
such	as	span.	

renderButtonsOn: html

 html div: [
 html span: [
 html cancelButton
 callback: [self answer: false];
 with: 'Cancel'.
].
 html span: [
 html cancelButton
 callback: [self answer: true];
 with: 'Save'.
].
].

5. Adding	a	new	event.	

a. Modify	LBScheduleComponent>>#renderContentOn:	to	add	an	<Add>	link.	

renderContentOn: html

 listComponent rows: LBEvent events asSortedCollection.
 html render: listComponent.
 html anchor
 callback: [self add];
 with: 'Add'.

b. Try	it	out	and	note	that	you	get	a	walkback	because	the	add	method	is	not	
implemented.	

c. Add	the	following	method:	

add

 | event editor |
 event := LBEvent new.
 editor := LBEventEditor on: event.
 (self call: editor) ifTrue: [
 LBEvent events add: event.
].

d. Refresh	your	browser	and	try	adding	an	event.	Try	opening	the	editor	but	cancelling	the	
new	event.		

Chapter	11:	Creating	a	Form	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 8	
	

e. Note	how	we	are	reusing	a	component—to	add	and	to	edit.	The	component	doesn't	
know	how	it	is	being	used	which	provides	for	good	encapsulation.	

f. Note	also	that	the	answer	is	useful	in	this	case.	If	the	user	pressed	the	Cancel	button,	we	
don't	want	to	add	the	new	event.	Before	going	further	let’s	cleanup	
LBScheduleComponent>>#’edit:’	so	that	we	don’t	alert	the	user	to	whether	the	‘Cancel’	
or	‘Save’	button	was	clicked.	Note	how	much	simpler	the	method	is	now.	

edit: anEvent

 self call: (LBEventEditor on: anEvent).

6. Edit	‘when’	with	WADateTimeSelector.	We	left	the	‘when’	field	as	read	only	since	we	are	storing	
an	instance	of	DateAndTime	(rather	than	an	instance	of	String).	Let’s	give	this	editor	some	more	
usability.	

a. 	As	we	discovered	in	Chapter	7,	Seaside	provides	a	number	of	sample	components	that	
can	be	used	to	present	typical	information	on	a	web	page.	Change	the	schema	for	
LBEventEditor	to	add	another	instance	variable.	

WAComponent subclass: #LBEventEditor
 instanceVariableNames: 'model dateTimeSelector'
 classVariableNames: ''
 category: 'LosBoquitas'

b. Modify	the	‘initialize:’	method	to	obtain	a	new	component	and	set	its	initial	value.	

initialize: anEvent

 self initialize.
 model := anEvent.
 dateTimeSelector := WADateTimeSelector new
 dateAndTime: model when;
 yourself.

c. Modify	the	‘renderWhenOn:’	method	to	use	the	new	component.	The	new	component	
is	enclosed	in	a	span	element	so	that	the	label	can	be	associated	with	the	component.	

renderWhenOn: html

 | tagID |
 html div: [
 html label
 for: (tagID := html nextId);
 with: 'When:'.
 html span
 id: tagID;
 with: [html render: dateTimeSelector].
].

Chapter	11:	Creating	a	Form	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 9	
	

d. Now	we	need	some	way	to	get	the	value	out	of	the	component	in	case	the	user	changed	
the	value.	Since	we	are	simply	rendering	a	subcomponent,	we	don’t	have	a	‘callback:’	
that	we	can	add	to	it.	Instead,	we	need	to	do	something	when	the	‘Save’	button	is	
clicked.	Modify	the	‘renderButtonsOn:’	method	to	call	a	new	‘save’	method.	

renderButtonsOn: html

 html div: [
 html span: [
 html cancelButton
 callback: [self answer: false];
 with: 'Cancel'.
].
 html span: [
 html submitButton
 callback: [self save];
 with: 'Save'.
].
].

e. Add	the	new	‘save’	method.	

save

 model when: dateTimeSelector dateAndTime.
 self answer: true.

7. Edit	‘who’	with	a	drop-down	list.	Often	we	want	to	constrain	the	value	of	a	field	to	something	
taken	from	a	list.	This	will	demonstrate	how	to	do	that.	

a. Add	a	method	to	LBEvent	(a	different	class)	that	returns	a	list	of	allows	values	for	‘who.’	

whoList

 ^#('players' 'family' 'guests' 'staff').

b. Modify	LBEvent>>#’initialize’	to	use	the	new	list.	

initialize

 super initialize.
 who := self whoList first.
 what := 'practice'.
 when := DateAndTime noon.
 where := 'field'.

Chapter	11:	Creating	a	Form	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 10	
	

c. Now	return	to	LBEventEditor	and	edit	‘renderWhoOn:’	so	that	we	create	a	<select>	
element	with	a	series	of	<option>	elements	(view	the	source	if	you	are	curious).	

renderWhoOn: html

 | tagID |
 html div: [
 html label
 for: (tagID := html nextId);
 with: 'Who:'.
 html select
 id: tagID;
 selected: model who;
 list: model whoList;
 callback: [:value | model who: value].
].

8. Edit	‘what’	with	a	single-select	list.	

a. Add	a	method	to	LBEvent	that	returns	a	list	of	allows	values	for	‘what.’	

whatList

 ^#('practice' 'registration' 'game' 'staff meeting' 'party').

b. Modify	LBEvent>>#’initialize’	to	use	the	new	list.	

initialize

 super initialize.
 who := self whoList first.
 what := self whatList first.
 when := DateAndTime noon.
 where := 'field'.

Chapter	11:	Creating	a	Form	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 11	
	

c. Now	return	to	LBEventEditor	and	edit	‘renderWhatOn:’	so	that	we	create	a	<select>	
element	with	a	series	of	<option>	elements	(view	the	source	if	you	are	curious).	Note	
that	the	only	difference	from	a	drop-down	list	is	that	the	size	is	specified	and	is	greater	
than	one.	

renderWhatOn: html

 | tagID |
 html div: [
 html label
 for: (tagID := html nextId);
 with: 'What:'.
 html select
 id: tagID;
 selected: model what;
 list: model whatList;
 size: 4;
 callback: [:value | model what: value].
].

9. Edit	‘where’	with	a	multi-line	text	area.	

a. Modify	‘renderWhereOn:’	to	replace	the	textInput	with	a	textArea.	

renderWhereOn: html

 | tagID |
 html div: [
 html label
 for: (tagID := html nextId);
 with: 'Where:'.
 html textArea
 id: tagID;
 value: model where;
 callback: [:value | model where: value];
 yourself.
].

b. Modify	the	CSS	to	make	the	field	larger.	Edit	LBFileLibrary>>#’boquitasCss’	to	add	the	
following	line.	(The	width	will	vary	depending	on	your	browser’s	selection	of	a	font	for	
the	text	area.	Because	of	this	it	might	be	better	to	use	a	pixel	width.)	

.eventEditor textarea { height: 4em; width: 30em; }

Chapter	11:	Creating	a	Form	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 12	
	

10. Make	‘when’	more	readable	in	the	table.	

a. Add	a	method	to	LBEvent	to	return	a	more	readable	version	of	the	when	value.	

whenString

 ^when asDate printString , ' ' , when asTime printString.

c. Modify	LBScheduleComponent>>#’whenReportColumn’	to	use	the	new	method.	

whenReportColumn

 ^WAReportColumn new
 title: 'When';
 selector: #whenString;
 clickBlock: nil;
 yourself.

11. In	order	to	demonstrate	checkboxes,	radio	buttons,	and	some	JavaScript	interaction	with	CSS,	
we	will	add	an	attribute	to	LBEvent	to	keep	track	of	whether	a	game	is	home	or	away.	

a. Add	‘gameType’	as	an	instance	variable	to	LBEvent.	We	will	treat	this	value	as	a	three-
state	flag:	nil	(for	‘not	a	game’),	#‘home’	(a	Symbol,	or	string	singleton),	and	#‘away’	
(also	a	Symbol).	The	initial	value	is	nil.	

Object subclass: #LBEvent
 instanceVariableNames: 'who what when where gameType'
 classVariableNames: ''
 category: 'LosBoquitas'

b. Using	the	class	refactoring	menu,	add	an	accessor	for	the	new	variable.	

c. We	will	have	three	form	elements	(a	checkbox	on	one	line	and	two	radio	buttons	on	
another	line)	to	capture	this	data	(three	radio	buttons	would	be	more	efficient,	but	this	
gives	a	good	demo!).	Because	of	the	way	Seaside	processes	the	callbacks	associated	
with	these	fields,	we	won’t	simply	assign	a	value	to	the	model	during	any	one	callback.	
Instead	we	will	have	two	instance	variables	in	the	editor	that	capture	various	pieces	of	
state	that	we	will	merge	as	part	of	the	save	process.	To	do	that,	add	‘isGame’	and	
‘gameType’	to	the	definition	of	LBEventEditor.	

WAComponent subclass: #LBEventEditor
 instanceVariableNames: 'model dateTimeSelector isGame gameType'
 classVariableNames: ''
 poolDictionaries: ''
 category: 'LosBoquitas'

d. Modify	LBFileLibrary>>#’boquitasCss’	to	add	a	line	allowing	a	<div>	element	to	be	
hidden	if	it	has	a	class	attribute	of	‘hidden.’	

.eventEditor div.hidden { display: none; }

Chapter	11:	Creating	a	Form	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 13	
	

e. Return	to	LBEventEditor	and	modify	‘renderContentOn:’	to	call	a	couple	new	methods	
(the	new	messages	will	show	as	red	since	the	methods	have	not	been	defined	yet).	

renderContentOn: html

 html form
 class: 'eventEditor';
 with: [
 self
 renderWhoOn: html;
 renderWhatOn: html;
 renderWhenOn: html;
 renderWhereOn: html;
 renderIsGameOn: html;
 renderGameTypeOn: html;
 renderButtonsOn: html;
 yourself.
].

f. Add	‘renderIsGameOn:’	to	LBEventEditor.	Note	that	this	method	has	JavaScript	code	
that	is	added	to	the	checkbox.	The	JavaScript	finds	the	element	created	below	and	
changes	its	class	depending	on	whether	the	checkbox	is	checked	or	not.	Based	on	the	
class,	the	CSS	defined	above	will	be	applied.	

renderIsGameOn: html

 | script tagID |
 script := "Workaround for IE bug (thanks to Stephan Eggermont)"
 'document.getElementById("idGameType").setAttribute("class",' ,
 'this.checked? "":"hidden");' ,
 'document.getElementById("idGameType").setAttribute("className",' ,
 'this.checked? "":"hidden");'.
 html div: [
 html label
 for: (tagID := html nextId);
 with: 'Is Game:'.
 html checkbox
 id: tagID;
 value: model gameType notNil;
 callback: [:value | isGame := value];
 onClick: script;
 yourself.
].

Chapter	11:	Creating	a	Form	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 14	
	

g. Add	‘renderGameTypeOn:’	to	LBEventEditor.	Note	that	the	HTML	class	attribute	of	the	
div	is	set	to	‘hidden’	or	nil	depending	on	whether	gameType	is	nil.	This	div	element	will	
have	its	class	changed	by	the	JavaScript	code	above.	

renderGameTypeOn: html

 | tagID group |
 html div
 id: 'idGameType';
 class: (model gameType isNil ifTrue: ['hidden'] ifFalse: [nil]);
 with: [
 html label
 for: (tagID := html nextId);
 with: 'Type:'.
 html span
 id: tagID;
 with: [
 group := html radioGroup.
 html radioButton
 id: (tagID := html nextId);
 group: group;
 selected: model gameType ~= #'away';
 callback: [gameType := #'home'].
 html label
 for: tagID;
 with: 'Home'.
 html radioButton
 id: (tagID := html nextId);
 group: group;
 selected: model gameType = #'away';
 callback: [gameType := #'away'].
 html label
 for: tagID;
 with: 'Away'.
]].

12. Try	out	the	various	combinations	and	note	how	the	game	type	is	displayed	and	hidden	based	on	
the	checkbox	value	(you	may	need	to	refresh	your	browser	a	few	times	to	reload	the	CSS).	This	
demonstrates	the	use	of	JavaScript	in	Seaside.	Note,	however,	that	the	value	is	not	saved	
(thanks	to	Stephan	Eggermont	for	noticing	this	and	providing	the	fix).		Edit	
LBEventEditor>>#’save’	as	follows.	

save

 model when: dateTimeSelector dateAndTime.
 model gameType: (isGame == true ifTrue: [gameType] ifFalse: [nil]).
 self answer: true.

13. Try	out	the	various	combinations	and	then	save	your	Pharo	image.	

