
Chapter	10:	Embedding	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 1	
	

In	this	chapter	we	enhance	the	Los	Boquitas	application	with	a	new	component	showing	upcoming	
events	in	a	table.	

1. First,	we	need	to	have	some	events	to	display.		

a. We	will	start	by	defining	an	event	class.	

Object subclass: #LBEvent
 instanceVariableNames: 'who what when where'
 classVariableNames: ''
 category: 'LosBoquitas'

b. Next	we	will	create	accessors	for	the	instance	variables.	Rather	than	creating	the	
methods	one	at	a	time,	you	can	use	some	of	Pharo’s	refactoring	tools	to	create	the	
methods.	Select	LBEvent,	right-click	and	select	‘refactor	class’	then	‘accessors’.	

	

Chapter	10:	Embedding	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 2	
	

c. The	refactoring	tool	will	show	you	the	proposed	new	methods	and	give	you	a	chance	to	
accept	or	cancel	before	the	changes	are	installed.	Click	the	‘Ok’	button.	

	

d. Add	a	method	to	support	sorting	the	events.	

<= anEvent

 ^self when <= anEvent when.

e. Add	an	initialize	method	to	ensure	that	something	is	in	each	instance	variable.	

initialize

 super initialize.
 who := 'players'.
 what := 'practice'.
 when := DateAndTime noon.
 where := 'field'.

Chapter	10:	Embedding	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 3	
	

2. 	Now	we	need	a	place	to	put	the	events.	In	most	web	frameworks	and	languages	we	would	now	
start	a	discussion	of	setting	up	a	relational	database.	In	Smalltalk,	however,	we	prefer	to	avoid	
the	‘object-relational	impedance	mismatch’	problem	(see	http://en.wikipedia.org/wiki/Object-
Relational_impedance_mismatch)	as	long	as	possible.	Instead	of	an	external	database	that	must	
be	configured	and	mapped	to,	we	will	save	our	event	objects	in	a	class	instance	variable	on	the	
LBEvent	class.	

a. In	the	Pharo	System	Browser,	select	LBEvent	in	the	class	list	and	then	click	on	the	‘Class	
side’	checkbox	below	the	class	list.	This	will	change	the	class	definition	to	a	definition	for	
the	class	instance	variable.	Edit	the	text	area	to	add	an	‘events’	class	instance	variable	
and	save	the	text.	

	

b. Now	click	in	the	method	category	list	to	get	a	method	template.	Add	a	class-side	
method	to	access	the	events.	

events

 events isNil ifTrue: [events := IdentitySet new].
 ^events.

Chapter	10:	Embedding	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 4	
	

c. Add	a	class-side	method	to	create	some	sample	events.	

createEvents
"
 LBEvent createEvents.
"
 events := nil.
 self events
 add: (self new
 who: 'family';
 what: 'registration';
 when: DateAndTime noon;
 where: 'Clubhouse';
 yourself);
 add: (self new
 who: 'players';
 what: 'practice';
 when: (DateAndTime noon + (Duration days: 1));
 where: 'field';
 yourself);
 add: (self new
 who: 'guests';
 what: 'game';
 when: (DateAndTime noon + (Duration days: 2));
 where: 'Memorial Park';
 yourself);
 yourself.

d. In	the	SystemBrowser,	click	anywhere	on	the	third	line	of	the	method	(the	one	sending	
the	‘createEvents’	message)	and	press	<Ctrl>+<D>	(for	‘do-it’).	By	adding	the	expression	
to	the	method	as	a	comment,	we	can	evaluate	it	without	having	to	go	to	a	workspace.	

3. Now	we	will	define	a	component	to	display	the	schedule.	

WAComponent subclass: #LBScheduleComponent
 instanceVariableNames: 'listComponent'
 classVariableNames: ''
 category: 'LosBoquitas'

a. The	goal	is	to	embed	this	component	into	the	main	application,	but	for	purposes	of	
development	and	testing	we	will	treat	this	as	a	stand-alone	component	(or	application).	
Register	the	application	by	evaluating	the	following	in	a	workspace.	

WAAdmin register: LBScheduleComponent asApplicationAt: 'boquitas-schedule'.

b. Add	a	place-holder	render	method.	

renderContentOn: html

 html heading: self class name.

Chapter	10:	Embedding	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 5	
	

c. In	a	web	browser,	navigate	to	the	dispatcher	(http://localhost:8080/browse)	and	
confirm	that	the	new	component	is	in	the	list	and	that	it	displays	the	class	name.	

4. Now	we	will	add	a	real	display	capability	to	the	component.		

a. Add	four	methods	to	define	report	columns	and	an	initialize	method	to	create	a	table	
report	using	those	columns.	

whoReportColumn

 ^WAReportColumn new
 title: 'Who';
 selector: #who;
 clickBlock: nil;
 yourself.

	

whatReportColumn

 ^WAReportColumn new
 title: 'What';
 selector: #what;
 clickBlock: nil;
 yourself.

	

whenReportColumn

 ^WAReportColumn new
 title: 'When';
 selector: #when;
 clickBlock: nil;
 yourself.

	

whereReportColumn

 ^WAReportColumn new
 title: 'Where';
 selector: #where;
 clickBlock: nil;
 yourself.

Chapter	10:	Embedding	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 6	
	

	

initialize

 | columns |
 super initialize.
 columns := Array
 with: self whoReportColumn
 with: self whatReportColumn
 with: self whenReportColumn
 with: self whereReportColumn.
 listComponent := WATableReport new
 columns: columns;
 rowPeriod: 1;
 yourself.

b. Now	modify	the	render	method	to	show	the	table.	

renderContentOn: html

 listComponent rows: LBEvent events asSortedCollection.
 html render: listComponent.

c. Starting	from	the	dispatcher	(http://localhost:8080/browse)	in	a	web	browser,	view	the	
schedule	component	and	confirm	that	it	shows	three	rows	of	four	columns.	(Don’t	click	
on	the	anchors	yet!)	

5. Now	we	will	update	our	main	application	to	make	room	for	a	child	component.	

a. Change	the	class	schema	for	LBMain	to	add	an	instance	variable	to	hold	the	component	
being	displayed	in	the	main	region.	

WAComponent subclass: #LBMain
 instanceVariableNames: 'mainArea'
 classVariableNames: ''
 category: 'LosBoquitas'

Chapter	10:	Embedding	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 7	
	

b. Modify	LBMain>>#renderSidebarOn:	to	change	the	heading.	

renderSidebarOn: html

 html div
 id: 'sidebar';
 class: 'section';
 with: [
 html heading
 level2;
 with: 'Menu'.
].

c. Return	to	your	web	browser	and	display	the	home	page	
(http://localhost:8080/boquitas).	It	should	have	the	new	text	now	('Menu'	instead	of	
'Sidebar').	

6. Add	a	menu	to	the	sidebar.	

a. Modify	the	sidebar	render	method	as	follows:	

renderSidebarOn: html

 html div
 id: 'sidebar';
 class: 'section';
 with: [
 html heading
 level2;
 with: 'Menu'.
 html anchor
 callback: [mainArea := LBScheduleComponent new];
 with: 'Events'.
].

b. View	the	home	page	in	a	browser	and	confirm	that	the	<Events>	link	is	present.	Clicking	
on	it	does	not	have	any	impact,	but	it	is	there!	

Chapter	10:	Embedding	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 8	
	

c. We	want	the	render	method	to	use	the	mainArea	component	if	it	exists;	otherwise,	the	
image	will	be	displayed.	Modify	the	renderMainOn:	method	as	follows.	

renderMainOn: html

 html div
 id: 'main';
 class: 'section';
 with: [
 mainArea notNil ifTrue: [
 html render: mainArea.
] ifFalse: [
 html image
 altText: 'children playing soccer';
 url: LBFileLibrary / 'boquitas.jpg';
 yourself.
].
].

d. View	the	home	page	in	a	web	browser	and	confirm	that	the	event	list	displays	when	you	
click	on	the	‘Events’	link	in	the	sidebar.	

e. We	now	want	a	way	to	return	to	the	home	page.	Modify	the	sidebar	render	method	as	
follows:	

renderSidebarOn: html

 html div
 id: 'sidebar';
 class: 'section';
 with: [
 html heading
 level2;
 with: 'Menu'.
 html anchor
 callback: [mainArea := nil];
 with: 'Home'.
 html break.
 html anchor
 callback: [mainArea := LBScheduleComponent new];
 with: 'Events'.
].

f. View	the	application	in	a	web	browser	and	confirm	that	you	can	switch	between	the	
image	and	the	schedule.	

Chapter	10:	Embedding	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 9	
	

7. The	‘renderMainOn:’	method	in	LBMain	includes	a	conditional	that	hints	for	the	need	of	a	
refactoring.	Now	that	we	have	one	subcomponent,	we	might	as	well	have	more.	

a. Create	a	new	component:	

WAComponent subclass: #LBHome
 instanceVariableNames: ''
 classVariableNames: ''
 category: 'LosBoquitas'

b. Add	a	render	method	to	LBHome	with	code	from	LBMain>>#’renderMainOn:’.	

renderContentOn: html

 html image
 altText: 'children playing soccer';
 url: LBFileLibrary / 'boquitas.jpg';
 yourself.

c. LBHome	is	done.	Now	we	will	go	back	and	add	an	initialize	method	to	LBMain	to	use	our	
new	component.		

initialize

 super initialize.
 mainArea := LBHome new.

d. Now	we	can	simplify	LBMain>>#’renderMainOn:’	considerably	by	always	rendering	a	
subcomponent	instead	of	having	conditional	code:	

renderMainOn: html

 html div
 id: 'main';
 class: 'section';
 with: [html render: mainArea].

Chapter	10:	Embedding	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 10	
	

e. Finally,	we	need	to	modify	one	line	of	the	sidebar	menu	creation	to	use	our	new	
component.	

renderSidebarOn: html

 html div
 id: 'sidebar';
 class: 'section';
 with: [
 html heading
 level2;
 with: 'Menu'.
 html anchor
 callback: [mainArea := LBHome new];
 with: 'Home'.
 html break.
 html anchor
 callback: [mainArea := LBScheduleComponent new];
 with: 'Events'.
].

f. Return	to	a	web	browser	and	start	the	application	over	from	
http://localhost:8080/boquitas.	You	should	be	able	to	switch	back	and	forth	between	
the	home	page	and	the	schedule.	

8. We	would	like	to	be	able	to	edit	events.	We	will	start	with	deleting	an	event.	

a. Add	LBScheduleComponent>>#’actionReportColumn’.	

actionReportColumn

 ^WAReportColumn new
 title: 'Action';
 valueBlock: [:anEvent | 'delete'];
 clickBlock: [:anEvent | self delete: anEvent];
 yourself.

Chapter	10:	Embedding	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 11	
	

b. Edit	LBScheduleComponent>>#’initialize’	to	use	the	new	column.	Note	that	instead	of	
using	the	instance	creation	message	‘with:with:with:with:’	on	Array,	we	are	using	an	
OrderedCollection	and	adding	items	to	it.	This	is	because	once	you	reach	more	than	four	
items,	there	might	not	be	a	class-side	method	that	accepts	enough	arguments.		Also	
note	that	this	is	an	example	of	where	the	‘yourself’	message	at	the	end	of	the	cascade	is	
not	just	cosmetic	but	is	necessary	since	the	‘add:’	method	returns	the	argument	(a	
column)	rather	than	the	receiver	(an	OrderedCollection).	

initialize

 | columns |
 super initialize.
 columns := OrderedCollection new
 add: self whoReportColumn;
 add: self whatReportColumn;
 add: self whenReportColumn;
 add: self whereReportColumn;
 add: self actionReportColumn;
 yourself.
 listComponent := WATableReport new
 columns: columns;
 rowPeriod: 1;
 yourself.

c. If	you	return	to	your	web	browser	and	refresh,	the	new	column	will	likely	not	appear.	
This	is	because	the	component	is	still	holding	an	instance	of	WATableReport	that	was	
initialize	with	only	four	columns.	To	see	the	new	table	you	need	to	click	on	the	‘Events’	
link	to	install	a	new	component.	

d. If	you	click	on	a	<delete>	link	now,	you	should	get	a	MessageNotUnderstood	error	
because	we	have	not	implemented	the	#delete:	method	in	LBScheduleComponent.	Add	
the	following	method	(and	note	how	we	are	not	doing	any	SQL	or	other	database	
related	activity):	

delete: anEvent

 LBEvent events remove: anEvent.

e. Try	refreshing	your	web	browser	and	note	that	one	of	the	events	has	been	removed.	

Chapter	10:	Embedding	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 12	
	

9. Before	you	delete	all	the	events,	we	will	add	a	confirm	dialog	using	JavaScript.	Edit	
LBScheduleComponent>>#’actionReportColumn’	to	change	how	the	‘Delete’	anchor	is	
generated.	Note	that	having	the	column	definition	in	its	own	method	means	that	we	don’t	have	
to	edit	a	big	method	to	make	this	change.	The	definition	of	the	column	is	encapsulated	in	a	
single	method	and	does	not	share	the	method	with	another	definition.	

actionReportColumn

 ^WAReportColumn new
 title: 'Action';
 valueBlock: [:each :html |
 html anchor
 onClick: 'return confirm(''Are you sure?'')';
 callback: [self delete: each];
 with: 'delete'.
];
 yourself.

Here	we	are	creating	an	anchor	and	giving	it	JavaScript	for	the	‘onclick’	event.	The	JavaScript	
code	will	run	before	the	link	is	followed,	and	if	the	JavaScript	returns	false	the	new	page	is	not	
requested.	

In	order	for	this	change	to	be	visible,	you	must	recreate	the	component.	A	simple	way	to	do	this	
is	to	click	the	‘Home’	link	and	then	click	the	‘Events’	link.	

After	deleting	events,	recreate	them	by	evaluating	‘LBEvent	createEvents’	in	a	workspace	or	
using	the	instructions	at	step	2d	above.	

10. Save	your	Pharo	image	and	quit.	

	

	

