
Chapter	9:	Incorporating	Images	and	CSS	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 1	
	

In	this	chapter	we	start	a	new	Seaside	application	that	will	incorporate	more	of	the	complexities	
normally	found	in	a	sophisticated	web	application.	The	primary	focus	of	this	chapter	is	how	to	
incorporate	CSS	(for	layout	and	style)	and	images	in	your	web	application.	

Imagine	that	your	child	has	been	recruited	to	play	on	the	best	youth	football	(soccer	for	you	Americans)	
team	in	the	region,	Los	Boquitas.*		All	the	parents	are	expected	to	be	involved	and	instead	of	coaching	
on	the	field,	you	have	agreed	to	create	a	web	site	to	manage	some	team	information.	After	a	review	of	
various	technologies,	you	have	decided	to	use	Seaside.	

Following	is	a	screen	shot	of	the	basic	structure,	showing	various	pieces	of	a	web	site	(header,	sidebar,	
main,	image,	footer),	that	we	will	build.	

	

This	layout	is,	of	course,	completely	arbitrary.	Web	page	layout	is	best	done	by	a	designer	and	that	
designer	should	provide	sample	HTML	and	the	CSS	to	go	with	the	HTML.	As	a	programmer,	your	job	is	to	
translate	the	HTML	into	Smalltalk	code	and	reference	the	supplied	CSS.		

																																																													
*	The	first	version	of	this	tutorial	was	in	2007	and	was	held	in	Buenos	Aires,	the	home	of	Club	Atlético	Boca	Juniors.	
Boca	is	Spanish	for	‘river	mouth’	and	the	club	is	in	a	neighborhood	on	the	mouth	of	the	Matanza	River.	The	idea	of	
naming	a	children’s	team	‘Little	Mouths’	seemed	appropriate.	

Chapter	9:	Incorporating	Images	and	CSS	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 2	
	

1. First	we	will	define	a	home	page	for	the	site.	We	will	use	'LB'	(for	Los	Boquitas)	as	the	prefix	for	
our	classes.	While	some	Smalltalk	dialects	(Cincom	and	GemStone)	support	namespaces,	this	is	a	
convention	that	helps	avoid	name	conflict	when	porting	code	across	dialects.	Launch	Pharo	and	
enter	the	following	class	definition:	

WAComponent subclass: #LBMain
 instanceVariableNames: ''
 classVariableNames: ''
 category: 'LosBoquitas'

a. Previously	we	have	registered	our	application	by	evaluating	an	expression	in	a	
workspace.	As	the	expression	gets	more	complex,	it	becomes	desirable	to	put	the	
expression	in	a	method	and	then	just	call	it	from	a	workspace.	This	allows	us	to	manage	
the	code	with	our	source	code	management	tools	(tracking	versions,	etc.).	An	added	
benefit	is	that	when	a	class	is	first	loaded	using	the	code	management	tools,	the	
message	‘initialize’	is	sent	to	the	class.	This	means	that	our	application	can	be	
automatically	registered	when	it	is	loaded	into	a	new	Smalltalk	object	space.			

Click	on	the	‘Class’	button	under	the	class	list	to	specify	that	we	are	adding	a	class-side	
method.	In	this	method	we	register	the	name	(boquitas)	and	also	specify	that	we	want	
to	use	a	WASession	as	the	session	class.	This	is	the	default	and	it	expires	a	session	that	is	
inactive	for	a	configurable	period	(the	default	is	10	minutes).		

initialize
"
 LBMain initialize.
"
 super initialize.
 (WAAdmin register: self asApplicationAt: 'boquitas')
 preferenceAt: #sessionClass put: WASession;
 yourself.

b. Now	we	are	ready	to	add	some	content.	Add	this	instance-side	method	to	LBMain	
(uncheck	the	‘Class	side’	checkbox	to	switch	from	the	class	side	back	to	the	instance	
side):	

renderContentOn: html

 html heading
 level: 1;
 with: 'Los Boquitas Soccer Team'.

2. Now	initialize	your	component	by	executing	the	following	in	a	workspace:	

LBMain initialize.

Alternatively,	you	can	switch	back	to	the	class	side,	select	the	initialize	method,	click	anywhere	
on	the	third	line,	and	press	<Ctrl>+<D>.	Don’t	forget	to	switch	back	to	the	instance	side.	

Chapter	9:	Incorporating	Images	and	CSS	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 3	
	

3. Finally,	start	at	the	dispatcher	page,	http://localhost:8080/browse,	and	follow	the	link	to	
boquitas.	If	your	application	is	not	visible,	then	go	back	and	see	if	you	put	the	proper	methods	
on	the	class	side	of	LBMain.	If	they	are	on	the	instance	side,	then	things	will	not	work.	

4. Now	we	will	start	the	process	of	adding	an	image.	

a. Modify	the	render	method	in	LBMain	so	that	there	is	an	image	tag	but	it	points	to	a	file	
that	does	not	exist:	

renderContentOn: html

 html heading
 level: 1;
 with: 'Los Boquitas Soccer Team'.
 html image
 url: 'boquitas.jpg';
 yourself.

b. Try	viewing	the	page	and	notice	that	the	image	does	not	display.	Depending	on	your	
browser,	a	placeholder	might	be	displayed.	At	a	minimum	we	need	some	alternate	text	
to	be	displayed	when	the	image	is	missing.	Modify	the	render	method	again:	

renderContentOn: html

 html heading
 level: 1;
 with: 'Los Boquitas Soccer Team'.
 html image
 altText: 'children playing soccer';
 url: '/images/boquitas.jpg';
 yourself.

c. Try	viewing	the	page	and	see	if	the	alternate	text	is	displayed.	In	Safari	the	text	is	not	
displayed,	but	this	is	a	feature,	not	a	bug!	Technically,	the	official	definition	of	the	alt	
attribute	is	that	it	is	for	user	agents	(browsers)	that	are	unable	to	display	images	(such	
as	screen	readers	for	visually	impaired	users).	Since	Safari	is	capable	of	displaying	
images,	the	alt	attribute	is	ignored.	

Chapter	9:	Incorporating	Images	and	CSS	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 4	
	

d. Now	we	could	update	the	link	to	reference	a	site	that	does	have	the	picture.	(If	you	are	
not	connected	to	the	Internet,	skip	to	step	#5.)	Modify	the	render	method	to	point	to	an	
external	server	with	the	file.	(If	you	are	running	a	local	server,	you	can	download	the	file	
from	seaside.gemstone.com	and	install	it	in	your	local	images	directory.)	

renderContentOn: html

 html heading
 level: 1;
 with: 'Los Boquitas Soccer Team'.
 html image
 altText: 'children playing soccer';
 url: 'http://seaside.gemtalksystems.com/images/boquitas.jpg';
 yourself.

e. View	the	page	and	verify	that	the	image	shows.	

5. While	having	an	external	server	provide	static	data	(such	as	images)	is	efficient	(reducing	the	
load	on	your	local	server—in	our	case	the	Pharo	VM),	it	does	mean	that	your	application	is	not	
completely	self-contained.	Sometimes	for	development,	testing,	or	demos	it	is	nice	to	have	even	
static	data	served	from	Smalltalk	(and	as	long	as	you	can’t	measure	the	performance	impact,	
why	not?).	To	support	serving	static	data,	Seaside	provides	an	abstract	class,	WAFileLibrary.		

a. Save	a	copy	of	the	image	to	a	local	directory.	You	can	do	this	from	your	web	browser	by	
right-clicking	on	the	image	and	selecting	‘Save	image	as…’	(the	exact	menu	command	
will	differ	based	on	your	web	browser).	Alternatively,	copy	the	file	from	a	CD/DVD	if	
included.	

b. Create	a	subclass	of	WAFileLibrary	to	handle	static	data	for	our	application	(click	in	the	:	

WAFileLibrary subclass: #LBFileLibrary
 instanceVariableNames: ''
 classVariableNames: ''
 category: 'LosBoquitas'

c. Add	the	downloaded	image	to	the	file	library	by	evaluating	an	expression	in	a	workspace	
that	includes	the	path	to	the	file	(this	will,	of	course,	differ	based	on	your	machine).	

LBFileLibrary addFileAt: 'C:\temp\boquitas.jpg'

Chapter	9:	Incorporating	Images	and	CSS	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 5	
	

d. Now	using	the	System	Browser,	note	that	a	new	method	(‘boquitasJpg’)	has	been	added	
to	the	instance	side	of	LBFileLibrary.	Modify	the	render	method	to	reference	the	new	
library.	Notice	how	the	class	LBFileLibrary	understands	the	‘/’	message	and	returns	a	
reference	to	the	static	file.		

renderContentOn: html

 html heading
 level: 1;
 with: 'Los Boquitas Soccer Team'.
 html image
 altText: 'children playing soccer';
 url: LBFileLibrary / 'boquitas.jpg';
 yourself.

e. If	you	view	source	in	your	web	browser,	you	can	see	that	Seaside	generated	the	
following	element	for	the	page:	

6. Adding	a	page	title.	

a. Note	that	the	page	is	simply	titled	"Seaside"	rather	than	something	more	descriptive.		
Add	the	following	instance-side	method	to	LBMain:	

updateRoot: anHtmlRoot

 super updateRoot: anHtmlRoot.
 anHtmlRoot title: 'Los Boquitas'.

b. View	the	page	again	and	note	that	it	now	has	a	title.	

Chapter	9:	Incorporating	Images	and	CSS	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 6	
	

7. Creating	multiple	areas.	

a. The	typical	web	site	has	a	header,	a	side-bar,	a	main	content	area,	and	a	footer.	We	will	
now	add	these	pieces	by	modifying	the	render	method	again.	Note	that	the	#’with:’	
message	is	the	last	one	sent	to	each	element	since	this	causes	the	HTML	tag	to	be	
written	and	closed.	

renderContentOn: html

 html div
 id: 'allcontent';
 with: [
 html div
 id: 'header';
 class: 'section';
 with: [
 html heading
 level1;
 with: 'Los Boquitas Soccer Team'.
].
 html div
 id: 'main';
 class: 'section';
 with: [
 html image
 altText: 'children playing soccer';
 url: LBFileLibrary / 'boquitas.jpg';
 yourself.
].
 html div
 id: 'sidebar';
 class: 'section';
 with: [
 html heading
 level2;
 with: 'Sidebar'.
].
 html div
 id: 'footer';
 class: 'section';
 with: [
 html text: 'Copyright (c) ' , Date today year printString.
].
].

b. View	the	page	and	confirm	that	the	various	pieces	exist.	Note,	however,	that	they	do	
not	have	any	formatting.		

Chapter	9:	Incorporating	Images	and	CSS	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 7	
	

8. Until	recently,	the	typical	way	of	doing	page	layout	was	to	use	a	table.	This	approach	is	no	
longer	recommended	and	the	better	approach	is	to	use	Cascading	Style	Sheets	(CSS).	In	chapter	
5	we	saw	that	a	‘style’	method	on	our	component	could	provide	style.	This	is	useful	for	simple	
experiments,	but	Seaside	provides	alternatives.	

a. Add	the	following	method	to	the	instance	side	of	LBFileLibrary	(not	LBMain!):	

boquitasCss

^'body {
 font-family: Georgia, "Times New Roman", Times, serif;
 font-size: small;
}

#allcontent {
 width: 770px;
 padding-top: 5px;
 padding-bottom: 5px;
 background-color: #fff0d0;
 margin-left: auto;
 margin-right: auto;
}

*.section {
 background-color: #ffeabf;
}

#header {
 margin: 10px;
}

#main {
 padding: 15px;
 margin: 0px 10px 10px 10px;
 width: 550px;
 float: right;
}

#sidebar {
 padding: 15px;
 margin: 0px 600px 10px 10px;
}

#footer {
 color: #204670;
 text-align: center;
 padding: 15px;
 margin: 10px;
 clear: right;
}'

Chapter	9:	Incorporating	Images	and	CSS	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 8	
	

b. Modify	the	root	component	to	reference	the	style	sheet	(back	to	LBMain!):	

updateRoot: anHtmlRoot

 super updateRoot: anHtmlRoot.
 anHtmlRoot title: 'Los Boquitas'.
 anHtmlRoot link
 type: 'text/css';
 beStylesheet;
 addAll;
 url: LBFileLibrary / 'boquitas.css';
 yourself.

9. Let's	refactor	the	render	code	so	that	it	is	more	modular.		

a. Add	the	following	four	methods:	

renderHeaderOn: html

 html div
 id: 'header';
 class: 'section';
 with: [
 html heading
 level1;
 with: 'Los Boquitas Soccer Team';
 yourself.
];
 yourself.

	

renderMainOn: html

 html div
 id: 'main';
 class: 'section';
 with: [
 html image
 altText: 'children playing soccer';
 url: LBFileLibrary / 'boquitas.jpg';
 yourself.
];
 yourself.

	

Chapter	9:	Incorporating	Images	and	CSS	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 9	
	

renderSidebarOn: html

 html div
 id: 'sidebar';
 class: 'section';
 with: [
 html heading
 level2;
 with: 'Sidebar';
 yourself.
];
 yourself.

	

renderFooterOn: html

 html div
 id: 'footer';
 class: 'section';
 with: [
 html text: 'Copyright (c) ' , Date today year printString.
];
 yourself.

b. And	now	modify	the	renderContentOn:	method	to	call	these	new	methods:	

renderContentOn: html

 html div
 id: 'allcontent';
 with: [
 self
 renderHeaderOn: html;
 renderMainOn: html;
 renderSidebarOn: html;
 renderFooterOn: html;
 yourself.
].

c. View	the	application	in	a	web	browser	to	confirm	that	it	displays	the	page	shown	at	the	
beginning	of	this	chapter.	

10. Save	your	Pharo	image.	

