
Chapter	8:	Smalltalk	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 1	
	

Smalltalk	

While	we	have	discussed	Smalltalk,	this	chapter	will	give	a	more	focused	description	of	the	language.	

Smalltalk	is	one	of	the	original	Object-Oriented	Programming	(OOP)	languages	and	came	from	Xerox's		
Palo	Alto	Research	Center	(PARC)	in	the	1970s.	It	inspired	much	of	today's	graphical	user	interface	
design	(Steve	Jobs	was	given	a	demo	of	Smalltalk	at	PARC	and	went	on	to	build	the	Macintosh)	and	
influenced	many	of	today's	programming	languages	(especially	Objective	C	and	Ruby).	While	not	as	well-
known	as	many	subsequent	languages,	it	has	a	vibrant	community	of	users	who	continue	to	provide	
leadership	in	the	software	industry.	

Like	its	influential	predecessor	Lisp,	but	unlike	most	of	today's	better-known	languages,	Smalltalk	is	
image-based	in	that	"programming"	consists	of	modifying	an	existing	system	rather	than	creating	a	new	
system	from	scratch.	That	is,	while	the	typical	C	program	is	created	by	compiling	text	files	into	an	
executable,	a	Smalltalk	program	is	created	by	cloning	an	existing	system	and	modifying	it	to	provide	new	
capabilities.	The	program	itself	is	represented	internally	by	objects	(including	classes	and	methods),	and	
changes	are	made	(i.e.,	code	is	written)	by	sending	messages	to	existing	objects.	

An	"image"	is	a	snapshot	(using	a	camera	metaphor)	of	a	live	object	space	written	to	a	binary	file.	An	
object	space	saved	in	this	way	can	be	exactly	recreated	by	reading	the	image	back	into	memory	and	
continuing	execution	from	the	point	of	the	snapshot	(much	like	a	fork()	operation	in	C	creates	a	new	
process	with	a	copy	of	the	existing	data).	This	process	of	writing	an	environment	to	disk	and	reading	it	
back	is	similar	to	the	hibernate	operation	on	a	modern	laptop	computer—when	the	image	is	restored	all	
the	windows	are	open	to	the	same	place	on	the	screen	and	they	have	the	same	content.	

A	typical	running	Smalltalk	system	consists	of	an	operating	system	process	(a	virtual	machine	to	
interpret	and/or	compile	source	code)	and	an	object	space	containing	all	the	code	and	data	(typically	
copied	into	RAM	from	the	disk-based	image).	The	virtual	machine	(VM)	is	also	responsible	for	automatic	
garbage	collection—reclaiming	space	used	by	unreferenced	objects.	If	the	VM	terminates	without	saving	
an	image	of	the	object	space,	then	changes	made	in	the	object	space	are	thrown	away	and	restarting	
from	an	earlier	image	will	restore	the	object	space	to	the	prior	state.	Most	Smalltalk	dialects	record	
programmer	activity	to	a	separate	log	from	which	code	changes	can	be	selectively	reapplied	so	that	
programmers	can	experiment	with	minimal	risk	of	losing	work.	

Because	a	Smalltalk	program	(classes	and	methods)	is	represented	by	objects	in	the	object	space,	the	act	
of	writing	a	program	involves	manipulating	the	object	space.	You	create	a	new	class	(a	subclass)	by	
sending	a	message	to	an	existing	class	with	arguments	that	describe	the	new	class's	schema	and	you	
create	a	new	method	by	sending	a	message	to	a	class	with	the	source	string	for	the	new	method.	These	
operations	are	typically	done	using	tools	built	into	the	environment.	Because	the	tools	and	the	code	live	
together	in	the	same	object	space,	there	is	a	rich	tradition	of	extensions,	such	as	refactoring	tools	(which	
originated	in	Smalltalk).	

Chapter	8:	Smalltalk	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 2	
	

Smalltalk	Syntax	

Sending	Messages	(Instead	of	Issuing	Commands)	

Where	other	languages	might	have	an	elaborate	syntax	(including	many	keywords	and	operators),	
Smalltalk	takes	a	simple	idea—message	passing—to	an	extreme.	Instead	of	issuing	a	series	of	commands	
for	the	computer	to	follow,	the	programmer	is	scripting	a	series	of	polite	requests	that	objects	make	of	
one	another	(and	the	receiver	responds	by	sending	other	messages).	The	syntax	of	message	sending	is	
to	name	a	variable	(which	always	holds	a	reference	to	an	existing	object)	and	then	specify	the	message	
with	any	arguments.	This	placement	of	the	object	first	is	backwards	from	the	approach	of	most	
languages	where	the	procedure	is	first.	For	example,	to	close	a	file,	most	languages	would	use	a	
construct	like	the	following	(where	the	semicolon	ends	an	expression):	

 Close(myFileHandle);

In	contrast,	Smalltalk	puts	the	object	first	rather	than	the	command	first	(and	expressions	end	with	a	
period	or	dot):	

 myFileHandle close.

Three	Message	Types	

There	are	three	types	of	messages:	(1)	unary	messages	(like	the	'close'	example	above),	(2)	binary	
messages	that	take	exactly	one	argument	(like	'+'	and	'*'	in	the	example	below),	and	(3)	keyword	
messages	where	one	or	more	arguments	follow	a	word	ending	with	a	colon	(like	'between:and:'	below).	
The	precedence	is	unary,	binary,	and	keyword,	with	left-to-right	within	a	particular	message	type.		While	
elegant	and	consistent,	this	creates	some	confusion	for	people	coming	from	other	languages.		The	
following	expression	(with	two	binary	messages)	evaluates	to	20	in	Smalltalk	(using	strict	left-to-right	
evaluation	for	binary	messages),	while	other	languages	would	give	14	(treating	'*'	as	a	language-defined	
operator	with	higher	precedence	than	'+'):	

 2 + 3 * 4.

As	in	other	languages,	parenthesis	can	be	used	to	change	the	order	of	evaluation.	If	you	want	the	above	
expression	to	evaluate	to	14,	use	the	following:	

 2 + (3 * 4).

Keyword	messages	use	words	rather	than	just	the	position	to	identify	the	argument.	For	example,	to	
check	for	a	value	in	a	certain	range	a	traditional	language	would	use	something	like	the	following:	

 between(x, y, z);

Chapter	8:	Smalltalk	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 3	
	

Smalltalk	makes	more	explicit	which	is	the	value	being	tested,	which	is	the	lower	bound,	and	which	is	
the	upper	bound.	While	this	requires	some	more	typing,	it	makes	the	code	easier	to	read:	

 x between: y and: z.

Five	Reserved	Words	

In	Smalltalk	there	are	only	five	reserved	words:	self,	super,	true,	false,	and	nil.	The	first	two,	self	and	
super,	are	"pseudo-variables"	that	are	used	in	a	method	to	reference	the	receiver	(an	object)	of	the	
current	message.	When	a	message	is	sent	to	self,	method	lookup	starts	in	the	class	of	the	receiver	
(without	regard	to	the	class	where	the	method	being	executed	is	implemented).	When	a	message	is	sent	
to	super,	method	lookup	starts	in	the	superclass	of	the	class	where	the	method	being	executed	is	
implemented.	The	remaining	reserved	words,	true,	false,	and	nil,	are	actually	globals	that	always	
reference	the	single	instance	of	the	classes	True,	False,	and	UndefinedObject	respectively.		

Control	Flow	(Loops	and	Conditionals)	

The	things	that	are	typically	done	in	other	languages	using	reserved	words,	including	class	definition	and	
flow-of-control,	are	done	in	Smalltalk	by	sending	a	message	to	an	object.	Thus,	while	a	traditional	
language	would	use	a	construct	like	the	following	for	a	loop	(where	for	is	a	command):	

 for (i = 0; ++i; i < sizeof(array)) { DoSomething(array(i)); };

Smalltalk	would	use	a	message	('to:do:')	sent	to	an	integer	to	create	a	similar	loop:	

 0 to: array size do: [:i | (array at: i) doSomething].

Here	the	'to:do:'	message	is	sent	to	an	instance	of	SmallInteger	with	two	arguments,	another	
SmallInteger	and	a	Block	(code	that	can	be	executed	later).		In	fact,	because	this	sort	of	iteration	is	
extremely	common,	another	message,	'do:,'	is	used	to	handle	iteration	without	explicitly	managing	the	
counter	(allowing	the	programmer	and	the	code	to	focus	on	a	higher	level):	

 array do: [:each | each doSomething].

In	the	above	example,	the	code	block	(inside	the	square	brackets)	is	an	object	passed	to	the	'do:'	
method	and	is	evaluated	repeatedly,	once	for	each	object	in	the	array.	Code	blocks	can	have	arguments,	
like	'each'	in	the	above	example	(the	preceding	colon	is	syntax	for	naming	a	block	argument).	

Code	blocks	are	also	used	for	conditionals.	In	the	following	example,	two	code	blocks	are	provided	as	
the	arguments	to	the	message	'ifTrue:ifFalse:',	where	the	receiver	is	a	Boolean	expression:	

 (x < 0) ifTrue: [self doThis] ifFalse: [self doThat].

Compare	the	above	Smalltalk	code	with	the	following	from	a	more	traditional	language	where	if	and	else	
are	reserved	words	in	the	language	syntax	rather	than	simply	messages	to	objects:	

 if (x < 0) then {doThis()} else {doThat()};

Chapter	8:	Smalltalk	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 4	
	

Assignment	and	Return	

Smalltalk	has	a	couple	built-in	operators	that	are	not	message	sends.	The	first	is	variable	assignment:	

 x := 3.

The	second	built-in	operator	specifies	an	immediate	return	from	a	method	with	a	particular	value:	

 ^x.

All	methods	return	an	object—either	explicitly	or	implicitly.	By	default,	the	object	returned	is	the	
receiver,	but	using	the	up-arrow	(as	above),	a	method	can	return	an	explicit	value.	If	the	goal	is	to	return	
early	from	a	method	that	would	not	otherwise	return	a	value,	then	the	return	value	is	typically	(by	
convention)	the	default	return	value,	self:	

 (x < 0) ifTrue: [^self].

Method	Definitions	

A	method	is	always	defined	in	the	context	of	a	class	and	starts	with	a	template	or	prototype	that	
includes	the	method	name	and	names	for	the	arguments.	Temporary	variables	are	defined	in	a	method	
or	block	by	enclosing	the	names	in	vertical	bars	before	any	expressions:	

add: anObject
 | sum |
 sum := self + anObject.
 ^sum.

Message	Cascades	

Because	it	is	often	useful	to	send	a	series	of	messages	to	the	same	object,	Smalltalk	provides	a	shortcut	
so	that	you	don't	have	to	repeat	the	receiver	in	a	method.	In	the	following	example,	two	messages	are	
being	sent	to	self,	but	the	receiver	is	only	identified	once	(note	the	semicolon):	

 self doThis; doThat.

Classes	are	Objects	

In	Smalltalk,	all	values	are	objects	that	are	instances	of	some	class.	Unlike	many	other	OO	languages,	
Smalltalk	implements	the	classes	themselves	as	objects.	Methods	can	be	defined	in	the	metaclass	for	a	
class,	so	that	messages	sent	to	the	class	will	find	and	evaluate	the	methods.	This	provides	what	in	other	
languages	might	be	characterized	as	a	static	function.	In	Smalltalk,	we	speak	of	having	methods	"on	the	
instance	side"	of	a	class	(where	they	will	be	evaluated	if	a	message	is	sent	to	an	instance	of	the	class)	
and	having	methods	"on	the	class	side"	(where	they	will	be	evaluated	if	a	message	is	sent	to	the	class).	
The	tools	typically	make	this	easy	to	manage.	

Chapter	8:	Smalltalk	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 5	
	

Constants	

The	Smalltalk	language	syntax	provides	for	creating	(or	referencing)	various	constants	in	a	method.		

A	Number	is	generally	defined	in	a	familiar	manner.	A	series	of	digits	without	punctuation	(and	with	an	
optional	preceding	minus	sign)	is	interpreted	as	an	instance	of	the	class	Integer.	If	a	decimal	point	(or	
dot)	is	included,	then	the	number	will	be	interpreted	as	an	instance	of	the	class	Float.	Floating	point	
numbers	are	also	permitted	to	have	an	exponent	component	(with	an	optional	sign).	A	number	that	
ends	with	's'	followed	by	one	or	more	digits	will	be	treated	as	an	instance	of	the	class	ScaledDecimal.		

A	Character	can	be	one	or	more	bytes	long,	depending	on	the	dialect.	The	dollar	symbol	introduces	the	
character	constant.		The	following	identifies	a	Character	with	the	code	point	(ASCII	value)	of	65.	

 x := $A.

A	String	is	defined	as	a	series	of	characters	enclosed	in	a	single-quote	or	apostrophe	character	(').	To	
include	a	single-quote	inside	a	string,	simple	double	it.	Thus,	'ab''cd'	is	a	five-character	string	where	the	
third	character	is	a	single-quote	character.	

A	Symbol	is	a	subclass	of	String	in	which	the	system	guarantees	that	only	one	instance	with	the	specified	
sequence	of	characters	will	exist	in	the	object	space.	This	allows	for	more	efficient	equality	comparison	
because	rather	than	doing	a	character-by-character	test,	the	system	only	needs	to	compare	the	object	
IDs	of	two	symbols	to	see	if	they	are	the	same.	Symbols	are	often	used	as	flags	in	the	way	that	an	
enumeration	or	#define	constant	might	be	used	in	C.	It	is	more	efficient	than	a	string	and	more	readable	
than	a	number.	To	define	a	constant	symbol,	precede	a	string	constant	with	a	hash	symbol.	In	many	
common	situations	(a	string	with	only	alphabetic	characters),	the	quotes	may	be	excluded.	The	following	
example	shows	two	constant	symbols:	

 x := #'this is a symbol'.
 y := #thisIsAlsoASymbol.

A	constant	Array	can	be	defined	in	a	method	using	a	hash	and	left	parenthesis	to	begin	the	list	and	a	
right	parenthesis	to	end	the	list.	Inside	the	list	may	be	any	other	constant	(including	Arrays).	The	
following	example	shows	a	constant	Array	containing	six	objects,	an	Integer,	a	Float,	a	Character,	a	
String,	a	Symbol,	and	another	Array	with	three	objects	(elements	are	separated	with	whitespace):	

 x := #(42 -1.25e-13 $A 'hello' #world #(1 2 3))

Comments	

Comments	are	included	in	a	method	by	enclosing	them	with	double-quote	characters	(").	To	include	a	
double-quote	character	in	a	comment,	double	it.	The	following	line	has	a	comment:	

 x := Float pi. "3.14159265358979"

Chapter	8:	Smalltalk	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 6	
	

Scope	for	Name	Lookup	

As	code	(generally	a	method)	is	compiled,	names	are	looked	up	using	a	succession	of	six	(6)	scopes,	
listed	here	from	innermost	(found	first)	to	outermost	(found	last):	

1. Block	arguments	and	temporaries	
a. Block	temps	are	initialized	to	nil	(the	sole	instance	of	the	UndefinedObject	class)	each	

time	the	block	is	evaluated	
b. Visible	only	within	the	block	

2. Method	arguments	and	temporaries	
a. Method	temps	are	initialized	to	nil	each	time	the	method	is	called,	even	if	called	

recursively	
b. Visible	only	to	code	within	the	method	

3. Instance	variables	
a. Initialized	to	nil	when	the	object	is	instantiated	
b. References	are	preserved	during	the	life	of	the	object	
c. Values	are	visible	only	to	methods	defined	in	the	class	where	the	variable	is	defined	and	

its	subclasses	
d. No	direct	access	is	permitted	in	standard	Smalltalk;	the	only	way	to	get	the	value	of	an	

instance	variable	from	outside	the	object	is	to	send	a	message	to	the	object	
4. Class	variables	

a. Initialized	to	nil	when	the	class	is	first	defined	
b. References	are	preserved	during	the	life	of	the	class	
c. Values	are	visible	to	all	methods	in	the	metaclass,	in	the	class,	and	in	all	subclasses	

5. Pool	Dictionaries	
a. Each	class	definition	can	have	zero	or	more	key/value	collections	(called	a	Dictionary	in	

Smalltalk,	but	typically	called	a	Hash	in	other	languages)	
b. A	single	dictionary	can	be	shared	among	multiple	classes	
c. Values	are	visible	and	shared	among	methods	in	all	classes	that	reference	the	pool	
d. These	are	typically	used	for	shared	constants	(e.g.,	map	a	color	name	to	a	number)	

6. Globals	
a. Smalltalk	provides	a	global	namespace	that	is	visible	and	shared	by	all	methods	
b. These	are	generally	used	to	hold	classes	

By	convention,	variables	in	scopes	1-3	are	named	with	an	initial	lowercase	letter	and	variables	in	scopes	
4-6	have	names	that	begin	with	an	initial	capital	letter.	As	in	other	languages,	it	is	considered	a	good	
engineering	practice	to	use	the	narrowest	scope	that	will	work	correctly.	That	is,	a	global	is	generally	
avoided	when	something	like	a	class	instance	variable	would	do.	And	while	a	block	can	reference	(read	
and	write)	method	temporary	variables,	if	the	variable	is	only	used	within	the	block	and	does	not	need	
to	preserve	its	value	between	block	evaluations,	it	would	likely	be	more	efficient	to	move	the	variable	to	
inside	the	block	(as	the	compiler	can	generate	simpler	code).		

Note	that	a	class	(an	instance	of	Metaclass)	may	have	instance	variables.	The	values	will	be	visible	only	
to	methods	on	the	metaclass	itself	(i.e.,	class-side	methods),	not	to	instances,	and	not	to	subclasses.	

Chapter	8:	Smalltalk	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 7	
	

The	Workspace	

In	Chapter	2	we	looked	briefly	at	the	three	windows	that	are	part	of	the	Seaside	One-Click	Experience.	
The	Workspace	is	a	text	area	where	Smalltalk	expressions	can	be	typed	and	evaluated.	To	get	another	
Workspace	you	may	left-click	on	the	desktop	to	get	a	World	menu	and	select	‘Playground’	from	that	
menu.		

	

After	you	have	the	new	Workspace,	try	entering	a	Smalltalk	expression	(like	‘100	factorial’)	and	then	
type	<Ctrl>+<P>	(for	‘print-it’).	You	should	see	a	very	large	integer	highlighted.	Press	<Backspace>	or	
<Delete>	while	the	text	is	selected	to	delete	it.		

If	you	type	<Ctrl>+<D>	(for	‘do-it’),	the	expression	will	be	evaluated	but	the	resulting	object	will	be	
ignored.	This	is	useful	when	we	want	to	evaluate	an	expression	to	cause	some	side-effect	to	occur	(like	
registering	a	new	Seaside	application)	and	are	less	interested	in	seeing	a	printout	of	the	result.	

Sometimes	we	want	to	investigate	a	returned	object	in	some	detail.	Most	Smalltalk	dialects	provide	an	
inspector	to	look	at	objects	in	more	detail	that	simply	printing	some	text	in	a	workspace.	In	a	Workspace	
enter	the	following	and	press	<Ctrl>+<I>	(for	‘inspect-it’;	on	a	Mac	you	might	need	to	use	
<Apple/Command>+<I>).		

DateAndTime now.

	

The	window	in	front	of	the	Workspace	is	an	
inspector	and	it	has	as	its	title	the	name	of	the	
class.	The	inspector	has	three	tabs	and	the	first	tab	
has	two	panes:	(1)	a	scrolling	list	of	the	object	and	
its	instance	variables,	(2)	a	text	area	with	a	printed	
representation	of	the	selected	instance	variable	
and	a	place	where	expressions	can	be	entered	and	
evaluated.	

If	you	right-click	in	the	Workspace	you	will	get	a	
context	menu	of	commands	that	apply	to	the	Workspace.	Some	of	these	are	similar	to	what	you	would	
expect	in	a	text	area	(cut/copy/paste/etc).	Others	provide	commands	for	executing	Smalltalk	code.	

Chapter	8:	Smalltalk	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 8	
	

The	System	Browser	

As	we	saw	with	the	Workspace,	you	can	get	a	new	System	Browser	by	clicking	on	the	Browser	icon	on	
the	desktop	and	dragging	it	to	a	convenient	location.	The	System	Browser	gives	you	a	way	of	looking	at	
the	classes	and	methods	defined	in	the	current	object	space	(usually	called	the	image).	The	first	column	
lists	categories	used	to	group	classes.	Scroll	through	the	list	to	see	a	sampling	of	categories:	

• Kernel:	Forms	the	innermost	foundation	for	the	Smalltalk	library	
• Collections:	Classes	like	Array	and	Set;	used	to	aggregate	objects	
• Files:	Classes	used	to	communicate	with	the	native	operating	system’s	files	
• Balloon,	Graphics,	Morphic:	Classes	used	to	create	Pharo’s	Graphical	User	Interface	(GUI)	
• Network:	Classes	used	to	communicate	with	the	native	operating	system’s	networking	layer	
• SUnit:	The	original	XUnit	testing	framework	that	inspired	various	other	unit	testing	frameworks	
• Compiler,	System:	Classes	that	support	the	internal	operation	of	Pharo	Smalltalk	
• Monticello:	A	source	code	management	and	version	control	system	
• Refactoring:	Classes	to	support	automated	refactoring	of	code	
• Seaside:	A	framework	for	developing	web	applications	in	Smalltalk	
• Scriptaculous:	An	add-on	to	Seaside	to	support	this	popular	JavaScript	library	

If	you	right-click	in	the	class	category	list	you	get	a	context	menu	that	allows	various	category-related	
operations	(add/delete/etc.).	Perhaps	most	useful	is	the	‘find	class…’	menu	command.	This	will	offer	a	
dialog	box	into	which	you	can	enter	a	fragment	of	a	class	name.	Pharo	will	then	present	a	list	of	classes	
with	a	matching	name.	When	you	select	one	the	browser	will	select	the	category	and	class.	

The	second	column	shows	a	list	of	classes	in	the	selected	class	category.	The	list	is	organized	in	a	
hierarchy	(and	alphabetically	when	classes	have	a	shared	superclass).	Right-click	to	get	a	context	menu,	
including	the	following:	

• new	class	template:	Replace	the	text	area	at	the	bottom	with	a	generic	class	definition	
• subclass	template:	Provide	a	template	for	creating	a	subclass	of	the	selected	class	
• browse:	Open	a	new	System	Browser	with	this	class	selected	
• browse	hierarchy:	Open	a	class	hierarchy	browser	showing	all	superclasses	(even	those	not	in	

the	current	class	category)		
• browse	references:	Show	a	list	of	every	method	in	the	system	that	references	this	class	
• chase	variables:	Open	a	browser	showing	instance	variables	and	methods	that	reference	a	

selected	instance	variable	

Below	the	second	column	is	a	checkbox	that	allow	you	to	view	methods	on	the	instance	side	and	class	
side	of	the	class.	A	frequent	error	is	creating	a	method	on	the	wrong	side	of	a	class.	Most	of	the	time	
you	should	be	on	the	instance	side;	when	you	go	to	the	class	side	be	sure	to	come	back.	

The	third	column	gives	a	list	of	method	categories	and	has	a	context	menu	that	allows	you	to	manage	
method	categories	(add,	rename,	remove,	etc.)	and	has	other	tools	similar	to	the	class	context	menu.		
The	fourth	column	gives	a	list	of	the	methods	in	the	selected	method	categories	for	the	selected	class.	

Chapter	8:	Smalltalk	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 9	
	

This	list	has	a	context	menu	that	allows	management	of	the	methods	and	has	other	tools	similar	to	the	
class	context	menu.	

Below	the	four	columns	are	a	series	of	buttons	that	mostly	open	new	browsers	that	are	also	available	
from	the	context	menus.	For	example,	when	a	method	is	selected	it	is	often	interesting	to	browse	
senders	of	that	message	or	other	implementers	of	that	message.	

Most	Pharo	windows	(that	you	will	interact	with	in	the	context	of	writing	a	Seaside	Application)	have	
various	standard	window	manipulation	capabilities.	You	can	close	a	window	by	clicking	in	the	red	circle	
at	the	top	left.	You	can	move	a	window	by	clicking	on	the	title	bar	and	dragging.	You	can	resize	a	
window	by	dragging	one	of	the	four	corners.		

The	Changes	Browser	

One	very	valuable	tool	is	the	Changes	Browser.	Left-click	on	the	desktop	to	get	a	World	menu,	select	
‘Tools…’	then	‘Recover	lost	changes…’.	This	will	present	you	with	a	list	of	events	in	reverse	chronological	
order	(the	most	recent	will	be	at	the	top).	The	‘SNAPSHOT’	event	refers	to	saving	an	image	of	your	
object	space	and	the	‘QUIT’	event	refers	to	quitting	Pharo	without	saving	an	image.	If	your	Pharo	image	
crashes	(or	you	quit	without	saving),	you	can	get	back	all	of	your	work.	Selecting	one	of	the	events	
(generally	the	most	recent	one)	will	show	you	a	list	of	your	activity	including	class	definitions,	method	
definitions,	and	expressions	evaluated	in	a	workspace.	You	can	replay	any	or	all	of	these	actions	to	get	
your	object	space	back	to	the	point	where	you	lost	your	work.	

The	Transcript	

The	Transcript	is	a	special	workspace	that	is	associated	with	the	global	named	‘Transcript.’	From	the	
World	menu	(left-click	on	the	desktop)	select	‘Tools…’	and	‘Transcript.’	From	another	workspace	
evaluate	the	following	expression	with	<Ctrl>+<D>	(for	‘do-it’).	

Transcript cr; show: 100 factorial printString.

The	string	should	appear	on	the	Transcript.	This	is	quite	handy	for	debugging	as	an	alternative	to	
interrupting	the	code	execution.	You	can	dump	a	string	to	the	Transcript	at	various	places	in	your	code	
to	see	what	is	happening.	This	is	similar	to	what	you	would	do	with	‘printf()’	and	standard	output	in	
other	languages.	

	

