
Chapter	7:	Continuations	and	Subroutine	Calls	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 1	
	

In	this	chapter	we	use	the	Flight	Information	application	to	learn	about	continuations,	an	often-cited	but	
poorly	understood	feature	of	many	Smalltalk	dialects	that	allows	Seaside	applications	to	use	subroutine	
calls	to	present	user-interface	components.		

As	we	look	at	the	advances	in	computer	system	technology,	it	is	amusing	to	see	how	the	pendulum	
swings	back	and	forth.	In	the	1970s	we	had	time-sharing	systems	in	which	multiple	users	could	get	
character	data	on	dumb	terminals	(initially	teletypes	then	‘green	screens’).	The	‘dumb’	terminals	
became	more	sophisticated	so	that	they	could	process	more	elaborate	display	attributes	(bold,	
underline,	blinking,	reverse,	etc.)	culminating	in	the	IBM	3270	terminal	that	was	used	to	connect	to	
mainframes.	One	of	the	features	of	the	3270	was	that	it	reduced	substantially	the	communication	with	
the	server.	A	screen	full	of	data	could	be	sent	by	the	server	to	be	displayed	on	the	terminal,	the	user	
would	enter	data	into	pre-defined	fields,	and	then	press	the	<Enter>	key	to	submit	all	the	data	back	to	
the	server	in	one	chunk.		

After	a	number	of	years	in	which	computing	became	much	more	distributed	and	user	interfaces	became	
much	more	sophisticated	(culminating	in,	say,	the	MacBook	Air),	the	web	era	is	taking	us	back	to	a	
model	in	which	a	(somewhat)	less	sophisticated	terminal	(the	browser)	displays	chunks	of	text	(though	
now	with	pictures	and	sound)	and	chunks	of	data	returned	to	the	central	server	when	the	user	clicks	a	
<Submit>	button.	While	the	browsers	(thin	clients)	are	closing	the	gap	between	them	and	the	rich	(or	
fat)	client	applications	in	terms	of	graphical	user	interface	widgets,	there	are	ways	in	which	the	
programming	models	have	gone	in	cycles	as	well.		

One	of	the	advances	in	software	engineering	was	the	introduction	of	the	subroutine.	As	developers	
recognized	the	value	of	avoiding	GOTO	(as	suggested	by	Edsger	Dijkstra's	letter	“Go	To	Statement	
Considered	Harmful”	in	1968)	they	tended	to	write	better	code.	Code	could	be	more	easily	reused	and	
the	main	(calling)	code	could	be	more	abstract	and	better	communicate	intent.	Instead	of	dealing	with	
low-level	details,	a	high-level	program	can	describe	what	steps	are	being	performed	and	rely	on	the	
subroutines	to	do	the	actual	work.		

The	irony	in	this	(for	purposes	of	our	discussion)	is	the	dearth	of	true	subroutine	calling	capability	
available	in	today's	web	frameworks.	Yes,	they	have	the	ability	to	include	other	web	components	(like	a	
page	header	or	footer),	but	the	process	of	writing	a	web	application	that	sequences	a	series	of	web	
pages	(like	a	shopping	cart	checkout)	is	not	likely	to	include	a	program	flow	that	looks	like	it	would	if	the	
program	were	handling	a	rich	(or	fat)	client	application.		

Note,	for	example,	how	much	a	web	page	link	behaves	like	a	GOTO	statement.	(This	is	the	implication	
behind	the	blog	title	selected	by	Seaside's	co-creator	Avi	Bryant:	“HREF	Considered	Harmful.”)	Clicking	
on	a	link	causes	a	request	to	be	made	for	a	new	page—and	the	program	that	provided	the	link	does	not	
even	know	that	you	left	its	page!	With	the	typical	template	framework,	processing	starts	at	the	
beginning	of	the	page	with	each	request.	There	is	no	easy	way	to	call	a	subroutine	that	presents	a	web	
page	and	returns	with	the	value	retrieved	from	that	web	page.	

	Seaside,	however,	has	such	a	capability	built	in	as	a	trivial	operation	and	we	will	use	it	to	call	a	new	
component	to	select	a	date/time	for	our	Flight	Information	application.	

Chapter	7:	Continuations	and	Subroutine	Calls	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 2	
	

1. Launch	the	Seaside	One-Click	Experience	and	in	the	System	Browser,	click	in	the	first	column	
(say,	on	the	‘GLASS’	line)	to	get	a	class	creation	template.	Create	a	new	subclass	of	
WAComponent	that	will	present	the	user	interface	for	selecting	a	date	and	time:	

WAComponent subclass: #FlightInfoWhenComponent
 instanceVariableNames: 'dateSelector timeSelector'
 classVariableNames: ''
 category: 'GLASS'

2. 	Click	in	the	third	column	to	get	a	method	creation	template	and	add	an	initialize	method	that	
creates	instances	of	two	subclasses	of	WAComponent,	WADateSelector	and	WATimeSelector:	

initialize

 super initialize.
 dateSelector := WADateSelector new.
 timeSelector := WATimeSelector new.

3. When	we	are	going	to	call	this	component,	we	need	to	tell	it	the	current	date/time	so	that	it	
starts	with	a	nice	default:	

when: aDateAndTime

 dateSelector date: aDateAndTime asDate.
 timeSelector time: aDateAndTime asTime.

Chapter	7:	Continuations	and	Subroutine	Calls	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 3	
	

4. As	we’ve	mentioned	earlier,	the	one	required	method	for	a	component	is	‘renderContentOn:’.	In	
this	example	we	introduce	a	form	with	a	submit	button.	Furthermore,	we	use	a	table	to	lay	out	
the	various	fields	in	the	form.		I’m	aware	that	using	tables	for	layout	is	frowned	on	by	CSS	
purists,	and	better	examples	will	come	in	later	chapters,	but	I’ve	chosen	to	use	a	table	here	
because	many	people	still	use	tables	for	layout	and	our	purpose	here	is	to	teach	Seaside	(and	
save	the	religious	wars	for	important	questions,	like	how	to	use	tabs	to	format	code	blocks	;-).	

renderContentOn: html

"3" html form: [
"4" html table: [
"5" html tableCaption: 'Select Date/Time for Flight'.
"6" html tableRow: [
"7" html tableData: 'Date:'.
"8" html tableData: [html render: dateSelector].
"9"].
"10" html tableRow: [
"11" html tableData: 'Time:'.
"12" html tableData: [html render: timeSelector].
"13"].
"14" html tableRow: [
"15" html tableData: ''.
"16" html tableData: [
"17" html submitButton
"18" callback: [self submit];
"19" with: 'Select'.
"20"].
"21"].
"22"].
"23"].

In	the	above	method	note	that	the	code	format	matches	how	we	might	format	an	HTML	
document.	At	the	top-level,	we	have	a	form	that	begins	on	line	3	and	ends	on	line	23.	Instead	of	
using	open	and	close	tags	(<form></form>)	we	use	a	left	square	bracket	(to	begin	a	code	block)	
and	a	right	square	bracket	(to	end	the	code	block).		This	is	a	way	of	telling	the	form	element	that	
everything	in	the	block	is	inside	the	form.	There	is	only	one	element	in	the	form,	a	table	element	
that	begins	on	line	4	and	ends	on	line	22.	Inside	the	table	are	four	elements,	a	table	caption	(line	
5)	and	three	table	rows	(lines	6-21).		

Again,	the	line	numbers	are	just	comments	and	can	be	left	out.	

The	three	table	rows	each	have	two	table	data	elements.	In	each	row	the	first	data	element	is	a	
label	(though	in	the	third	row	the	label	is	blank),	and	the	second	element	is	some	other	
construct.	The	third	row	contains	a	submit	button	(rows	17-19)	that	should	look	a	lot	like	our	
earlier	anchor	examples—it	has	a	callback	and	a	text	label.	The	callback	contains	a	block	of	code	

Chapter	7:	Continuations	and	Subroutine	Calls	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 4	
	

that	is	set	aside	and	not	evaluated	until	the	user	clicks	on	the	submit	button.	At	that	point	the	
form	data	is	submitted	and	the	‘submit’	method	is	invoked.	

The	more	unusual	code	is	on	lines	8	and	12.	Here	we	are	simply	rendering	other	components,	
the	ones	created	in	the	‘initialize’	method.	Here	are	examples	of	true	‘components’	in	which	a	
small	class	does	a	simple	thing	and	we	can	reuse	it	in	a	variety	of	places	with	minimal	effort.	

5. Finally,	we	need	the	‘submit’	method	that	will	be	called	when	the	user	clicks	on	the	‘Select’	
button.	This	code	extracts	the	date	and	time	from	the	child	components,	and	constructs	an	
instance	of	DateAndTime.	The	interesting	piece	here	is	the	last	line	which	is	where	the	new	
DateAndTime	is	used	as	an	argument	to	‘answer:’	to	return	a	value	to	the	caller	of	the	
component.	We	will	look	at	that	shortly.	

submit

 | date time dateAndTime |
 date := dateSelector date.
 time := timeSelector time.
 dateAndTime := DateAndTime date: date time: time.
 self answer: dateAndTime.

6. All	this	gives	us	a	new	component,	but	no	clear	UI	for	it.	If	you	want	to	see	the	component	by	
itself,	you	can	register	the	component	as	an	application	and	then	view	it	using	a	web	browser.	
Evaluate	the	following	in	a	workspace.	

WAAdmin register: FlightInfoWhenComponent asApplicationAt: 'when'.

7. With	a	web	browser,	navigate	to	http://localhost:8080/when	and	you	should	see	the	following:	

	

Chapter	7:	Continuations	and	Subroutine	Calls	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 5	
	

8. In	the	System	Browser	in	Pharo,	switch	back	to	the	FlightInfoComponent	(we	are	done	with	the	
FlightInfoWhenComponent	for	the	moment)	and	click	in	the	third	column	to	get	a	method	
creation	template.	

	

Now	we	will	add	a	method	to	FlightInfoComponent	to	call	the	new	component	(if	you	get	an	
error	it	is	likely	because	you	are	still	on	the	FlightInfoWhenComponent;	make	sure	to	select	the	
FlightInfoComponent	class):	

selectWhen

"3" | component when |
"4" component := FlightInfoWhenComponent new
"5" when: model when;
"6" yourself.
"7" when := self call: component.
"8" model when: when.

This	method	asks	for	a	new	instance	of	the	FlightInfoWhenComponent	class	and	assigns	into	it	
the	current	model’s	date/time.	To	review	some	Smalltalk	dealing	with	lines	4-6:	

a. The	‘new’	message	is	sent	to	the	FlightInfoWhenComponent	class	which	returns	a	new	
instance	of	the	class	(this	is	a	unary	message).	The	new	instance	will	have	its	‘initialize’	
method	called,	so	its	two	instance	variables	will	have	new	components	in	them.	The	
new	instance	is	held	on	the	execution	stack	temporarily.	

Chapter	7:	Continuations	and	Subroutine	Calls	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 6	
	

b. The	unary	message	‘when’	is	sent	to	the	object	in	the	‘model’	instance	variable	and	it	
returns	a	DateAndTime	instance.	(This	message	is	sent	before	the	‘when:’	message	
because	unary	messages	have	precedence	over	keyword	messages.)		

c. The	keyword	message	‘when:’	is	sent	to	the	instance	of	FlightInfoWhenComponent	
created	in	(a)	and	this	sets	the	default	values	of	the	WADateSelector	and	the	
WATimeSelector.		

d. The	message	‘yourself’	is	sent	to	the	receiver	of	the	previous	message	(‘when:’),	which	is	
our	new	instance	of	FlightInfoWhenComponent	created	in	(a)	above.	This	message	
simply	returns	itself	so	is	a	slight	performance	overhead	but	serves	a	couple	purposes.	
First,	it	means	that	the	new	instance	of	FlightInfoWhenComponent	is	the	object	
returned	by	the	final	message	send.	Without	it	the	returned	object	would	be	the	result	
of	the	‘when:’	message	send,	which	might	be	our	new	component,	but	could	be	
something	else	(like	the	DateAndTime	argument);	without	going	to	read	the	code	we	
couldn’t	be	sure.	Second,	it	means	that	we	could	add	another	message	send	after	line	5	
without	having	to	edit	line	5.	That	is,	if	line	5	ended	with	a	period	instead	of	a	
semicolon,	then	we	couldn’t	add	another	message	send	without	changing	the	period	to	
a	semicolon.	Having	to	edit	a	‘when:’	message	send	to	add	a	‘where:’	message	send	(for	
example),	implies	that	something	has	changed	about	the	‘when:’	message,	when	it	
really	hasn’t.		

e. Finally,	the	reference	to	the	object	returned	by	the	‘yourself’	message	is	placed	in	the	
method	temporary	‘component.’	

Line	7	is	where	we	send	‘call:’	with	the	new	component.	This	tells	Seaside	to	suspend	the	
current	method,	show	the	new	component	(a	FlightInfoWhenComponent)	in	place	of	the	
current	component	(a	FlightInfoComponent),	wait	for	the	new	component	to	send	‘answer:’,	
and	take	the	object	sent	as	an	argument	to	‘answer:’	and	put	a	reference	to	it	in	the	method	
temporary	named	‘when.’	The	DateAndTime	returned	by	the	new	component	is	passed	with	the	
‘when:’	message	as	an	argument	to	the	model.	

The	magic	here	is	that	the	execution	was	interrupted	in	the	middle	of	line	7,	another	web	
component	was	sent	to	the	client	browser,	the	user	interacted	with	that	component,	and	then	
finally	when	the	second	component	decided	it	was	done	(by	sending	‘answer:’),	execution	
continued	(hence	the	name	continuation)	where	it	paused	in	line	7.		

The	ability	to	treat	a	web	page	as	a	subroutine	is	something	that	few	web	frameworks	allow.	
This	is	because	each	page	request	needs	to	finish	execution	by	returning	a	page.	At	this	point	
the	web	application	framework	is	essentially	done	and	waiting	for	another	request.	Each	
request	starts	at	the	beginning,	creates	a	page,	and	finishes	by	returning	the	page.	To	stop	in	the	
middle	of	processing	a	page	request	means	that	the	page	is	not	returned.	Thus,	the	call	stack	is	
unwound	as	part	of	the	‘return	a	new	page’	action.	This	is	particularly	evident	in	web	
frameworks	that	use	templates	(and	most	do).	The	application	logic	has	to	start	fresh	at	the	top	

Chapter	7:	Continuations	and	Subroutine	Calls	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 7	
	

of	each	page	and	if	some	conditional	is	required	it	can	check	for	session	data	left	over	from	
previous	interactions	with	the	client	(or	data	submitted	by	a	POST	request).		

In	Smalltalk,	when	the	application	reaches	a	point	where	it	wants	to	be	able	to	suspend	
execution	of	the	current	stack	(as	implied	by	a	subroutine	call)	but	still	return	from	execution	of	
the	current	stack	(as	required	by	the	need	to	return	a	page	to	the	client),	the	application	can	
create	a	continuation.	A	continuation	is	a	copy	of	the	current	stack,	including	all	temporary	
variables	and	method	arguments,	with	the	property	that	it	can	be	returned	to	later	at	the	point	
where	it	was	suspended.	Execution	can	continue	with	a	passed-in	value	that	will	(in	Seaside)	be	
used	as	the	object	returned	after	sending	the	‘call:’	message.	

9. Now	that	we	have	a	‘selectWhen’	method,	we	need	to	create	something	to	call	the	method.	
Modify	the	‘renderContentOn:’	method	to	add	the	last	four	lines:	

renderContentOn: html

 html heading: model.
 self renderChangeTimeLinksOn: html.
 html anchor
 callback: [self inform: 'You selected ' , model printString];
 with: 'Book flight for ' , model printString.
 html horizontalRule.
 html anchor
 callback: [self selectWhen];
 with: 'Select Date/Time'.

The	‘horizontalRule’	is	there	to	show	you	how	to	generate	an	<hr	/>	element.	The	new	anchor	
uses	the	typical	format	of	a	callback	and	a	label.	

10. Try	out	the	new	functionality	in	your	web	browser	and	see	how	easy	it	is	to	enter	a	date/time	
and	see	the	impact	on	the	price.	

11. We	have	completed	the	Flight	Information	application.	Be	sure	to	save	your	image.	

