
Chapter	6:	Saving	State	on	the	Server	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	 1	
	

In	this	chapter	we	use	the	Flight	Information	application	to	learn	how	Seaside	saves	user	data	as	part	of	
a	web	application.	But	first,	some	background	on	the	problem…	

The	HTTP	protocol	(which	is	used	by	web	browsers	to	communicate	with	web	servers)	is	by	design	very	
light-weight	and	intentionally	avoids	keeping	any	information	that	would	tie	one	page	request	to	
another	page	request.	This	worked	well	when	the	web	served	static	documents	(the	web	was	initially	
designed	for	the	academic	research	community).	Unfortunately,	this	does	not	work	so	well	for	complex	
applications	such	as	e-commerce	or	travel	reservation	where	we	need	to	keep	track	of	items	added	to	a	
shopping	cart	or	flights	selected.	

Various	strategies	are	available	to	preserve	state	from	one	page	to	another.	One	approach	is	to	add	
hidden	fields	to	forms.	When	the	form	is	submitted	to	the	server,	the	hidden	fields	can	contain	saved	
data.	This	is	okay	if	a	form	will	be	submitted,	but	doesn’t	work	if	the	user	clicks	on	a	link	(technically,	the	
hidden	field	approach	works	for	POST	requests,	but	not	for	GET	requests).	Another	approach	is	to	use	
cookies.	This	works	for	both	GET	and	POST	as	long	as	the	user	has	not	disabled	cookies	in	the	web	
browser.	Also,	the	same	cookie	is	sent	for	every	request	to	the	same	server,	so	if	the	user	has	two	tabs	
in	the	same	browser,	any	changes	in	one	will	be	visible	to	the	other.	A	third	approach	is	similar	to	“URL	
Rewriting”	but	instead	of	making	the	URL	simpler	or	prettier,	data	is	added	to	the	URL	(making	it	uglier).		

In	any	case,	one	needs	to	consider	what	data	is	sent	to	the	browser	to	be	returned	by	the	client	
(whether	in	a	hidden	field,	in	a	cookie,	or	in	the	URL).	If	actual	user	data	is	encoded	then	nothing	needs	
to	be	remembered	on	the	server.	This	scales	very	nicely,	but	opens	the	application	to	hacking.	(See	the	
PayPal	example	below.)	

The	more	secure	alternative	is	to	store	user	data	on	the	server	and	send	a	session	key	to	the	client	to	be	
returned	with	subsequent	requests	to	the	server.	With	user	data	on	the	server	it	should	be	difficult	for	a	
hacker	to	modify	server	data	other	than	through	the	web	application.	If	the	session	key	is	hack	resistant	
(say,	a	large	random	number),	then	there	is	little	risk	of	someone	hijacking	another	user’s	session.	The	
down	side	of	this	approach	is	that	the	server	must	store	data	on	each	session	and	if	there	are	a	lot	of	
sessions	then	there	can	be	a	lot	of	data.	Further	complicating	this	is	that	most	users	who	start	
interacting	with	a	web	application	will	not	complete	the	process	(it	is	common	to	add	a	product	to	a	
shopping	cart	and	not	complete	the	purchase).	The	application	then	needs	to	decide	when	to	expire	
stale	sessions.	In	order	to	handle	a	lot	of	user	sessions,	the	application	needs	to	be	able	to	store	and	
quickly	retrieve	a	lot	of	data.				

Chapter	6:	Saving	State	on	the	Server	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	 2	
	

One	significant	problem	of	storing	user	data	on	the	server	with	a	session	key	on	the	client	is	that	the	
user	could	use	the	browser’s	back	button	to	change	the	displayed	data	without	communicating	to	the	
server	that	the	user	is	looking	at	different	data.	Following	are	a	couple	screen	shots	of	commercial	web	
applications	that	instruct	the	user	not	to	use	the	browser’s	back	button.	This	seems	like	a	rather	clumsy	
solution	to	the	problem.	

	

We	will	continue	our	Flight	Information	application	to	examine	this	problem	and	how	Seaside	addresses	
it.	

Chapter	6:	Saving	State	on	the	Server	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	 3	
	

A	particularly	striking	example	of	sending	critical	data	in	an	easily	hackable	manner	is	
found	in	“Advanced	Professional	Web	Design”	by	Clint	Eccher	(Charles	River	Media,	
2007).	Chapter	3	is	titled	“Understanding	E-Commerce	Functionality”	and	on	page	72	
describes	how	to	submit	a	shopping	cart	to	PayPal	using	a	URL	with	encoded	data.	The	
example	link	is		

<a href="https://www.paypal.com/cart/add=1&business=...&

item_name=...&item_number=...&amount=17.95&..."
target="_new">

When	I	first	read	Eccher’s	book	I	tried	the	link	with	different	values	for	the	amount	and	
there	was	every	indication	that	PayPal	would	complete	the	order	with	the	revised	
amount.	Following	is	a	screen	shot	of	the	shopping	cart	with	a	price	of	$1.95	instead	of	
$17.95:	

	

Note	that	the	problem	displayed	here	is	not	with	Eccher’s	description	or	his	sample	
code,	but	with	the	credit	card	processing	design	he	describes.	(If	using	this	approach	it	
would	be	important	for	the	seller	to	check	the	price	paid	by	the	customer	before	
shipping	the	merchandise.)	

	

[E-Commerce	Site	Name	and	Logo	removed]	

Chapter	6:	Saving	State	on	the	Server	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	 4	
	

1. At	this	point	our	Flight	Information	application	allows	a	very	trivial	way	of	searching	for	flights	
but	does	not	offer	any	way	to	select	a	displayed	flight.	Before	we	begin	the	following	exercise,	
make	sure	you	have	the	Seaside	One-Click	Experience	running	and	that	you	can	browse	the	
Flight	Information	application	in	a	web	browser.	

2. 	First,	the	method	FlightInfoComponent>>#renderContentOn:	(this	is	a	typical	Smalltalk	way	of	
identifying	a	class	and	method)	is	getting	a	bit	long.	We	will	start	with	copying	most	of	the	code	
to	a	new	method	and	adding	a	line	break	after	the	earlier/later	links.	Next	we	will	add	a	new	
anchor	to	report	the	selected	flight.	

renderChangeTimeLinksOn: html

 html anchor
 callback: [model addHours: -30];
 with: '<- Earlier'.
 html space.
 html anchor
 callback: [self later];
 with: 'Later ->'.
 html break.

	

renderContentOn: html

 html heading: model.
 self renderChangeTimeLinksOn: html.
 html anchor
 callback: [self inform: 'You selected ' , model printString];
 with: 'Book flight for ' , model printString.

3. In	your	web	browser	refresh	the	FlightInfo	page	to	get	the	new	elements,	click	the	‘Later	->’	link	
a	few	times,	and	then	click	on	the	‘Book	flight’	link.	Your	web	browser	should	show	a	page	
showing	the	date,	time,	and	price	for	the	flight.	Clicking	the	OK	button	takes	you	back	to	the	
flight	information	page.		

4. Now	click	the	‘Later	->’	link	a	few	times,	note	the	price,	click	the	browser’s	back	button	once,	
note	the	price,	and	then	click	the	‘Book	flight’	link.	Compare	the	price	displayed	on	the	inform	
page	with	the	two	prices.	Because	data	is	saved	on	the	server,	and	because	the	server	did	not	
know	that	you	clicked	the	back	button,	the	‘Book	Flight’	link	showed	you	the	data	saved	on	the	
server,	not	the	data	displayed	in	the	browser.		

5. We	can	see	the	same	problem	if	we	have	two	browsers	or	tabs.	In	your	current	web	browser,	
right-click	on	the	‘Later	->’	link	and	select	the	menu	option	to	open	in	a	new	window.	In	the	
second	window	click	the	‘Later	->’	link	a	few	times.	Then	switch	back	to	the	first	window,	note	
the	displayed	date/time/price,	and	then	click	the	‘Book	flight’	link.	Note	that	the	‘wrong’	flight	
was	booked.	Again,	this	happened	because	there	is	one	FlightInfo	instance	that	is	kept	in	the	
‘model’	instance	variable	of	the	one	FlightInfoComponent	being	displayed	on	multiple	windows.		

Chapter	6:	Saving	State	on	the	Server	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	 5	
	

6. To	address	this	problem,	Seaside	gives	you	a	way	to	identify	objects	for	which	the	state	at	the	
time	a	page	is	rendered	should	be	preserved	and	associated	with	that	page.	When	a	user	
interacts	with	that	page	in	the	future	the	state	of	the	object	is	restored	to	how	it	was	when	the	
page	was	originally	rendered.	Thus,	while	there	is	still	only	one	FlightInfo	instance,	its	state	
(when	&	price)	can	be	preserved	by	Seaside	and	restored	if	needed	for	a	future	request.	To	see	
this	simply	add	a	method	to	FlightInfoComponent:	

states

 ^Array with: model.

7. After	saving	the	new	‘states’	method,	return	to	your	web	browser,	click	the	‘Later	->’	link	a	few	
times,	click	the	browser’s	back	button,	note	the	displayed	date/time/price,	and	then	click	the	
‘Book	flight’	link.	Note	that	the	correct	flight	is	displayed.		

Seaside’s	approach	of	saving	state	on	the	server	is	powerful	and	easy,	but	it	does	come	at	a	
price.	Now	we	are	keeping	information	on	the	server	not	just	for	every	user	(or	session),	but	for	
every	page	served	to	every	user.	This	is	a	manifestation	of	the	old	adage	that	“There’s	no	such	
thing	as	a	free	lunch.”	The	nice	thing	is	that	it	is	available,	and	you	can	choose	to	use	it	if	your	
application	would	benefit	from	this	help.	Also,	keep	in	mind	that	until	you	measure	performance	
(either	space	or	speed)	it	is	probably	a	mistake	to	be	overly	concerned.	

8. 	Save	your	Pharo	image	before	going	on	to	the	next	chapter.	

