
Chapter	5:	Exploring	some	Tools	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 1	
	

In	this	chapter	we	use	the	Flight	Information	application	to	learn	how	to	use	a	debugger	and	see	how	

Smalltalk	provides	uniquely	powerful	debugging	opportunities.	Then	we	will	explore	how	code	can	be	

edited	from	a	web	browser	and	discuss	code	blocks,	a	powerful	feature	of	Smalltalk.	

1. Start	Pharo	if	it	is	not	running	and	in	the	System	Browser	select	the	FlightInfoComponent	and	

the	‘renderContentOn:’	method.	We	will	modify	this	method	in	such	a	way	as	to	introduce	an	

error	into	the	code.		

renderContentOn: html

 html headingg: model.

This	changes	the	message	sent	from	‘heading:’	to	‘headingg:’	and	represents	a	typical	‘typo’	that	

could	easily	be	made.	Note	that	the	message	is	in	red	type,	indicating	that	there	is	no	object	in	

the	entire	object	space	that	understands	this	message.		

	

Recognizing	that	the	method	is	wrong,	we	can	change	it	to	something	else,	‘headerAt:’,	that	is	

recognized,	but	still	wrong.	

	

This	demonstrates	a	problem	with	dynamically	typed	languages	(such	as	Smalltalk).	Because	a	

variable	can	hold	a	reference	to	any	object,	we	can’t	tell	at	compile	time	whether	the	receiver	

will	understand	the	message	we	send	to	it.	One	of	the	advantages	of	a	statically	typed	language	

is	that	this	sort	of	error	is	substantially	avoided.	Suffice	it	to	say	that	this	is	the	topic	of	many	

language	wars,	and	we’ll	let	it	go	with	the	statement	that	Smalltalkers	are	almost	universally	

happy	with	the	flexibility	offered	by	the	dynamic	environment.	Of	course,	this	means	that	we	

occasionally	have	to	fix	problems	where	we	sent	the	wrong	message,	so	here	goes!	

Chapter	5:	Exploring	some	Tools	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 2	
	

2. Return	to	your	web	browser	and	navigate	to	the	‘FlightInfo’	component	(click	the	<Refresh>	

button	if	you	are	already	there).	Seaside	returns	an	error.	

	

This	is	informative	but	not	very	helpful	for	debugging.	In	a	new	tab,	open	

http://localhost:8080/config/FlightInfo	and	click	the	‘Configure’	button	next	to	

‘WAExceptionFilter.’		

	

Next,	click	the	‘Override’	button	next	to	‘WAHtmlErrorHandler’.	

	

From	the	drop-down	list	of	Exception	Handlers,	select	‘WADebugErrorHandler’	and	then	click	

the	‘Apply’	button.	

	

Chapter	5:	Exploring	some	Tools	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 3	
	

Now	return	to	your	web	browser	tab	with	the	Flight	Info	error	and	click	refresh.	Note	that	the	

web	browser	just	hangs.	This	is	because	Seaside	got	an	error	and	has	not	returned	any	HTML	to	

the	client	and	it	gives	us	an	opportunity	to	look	at	Smalltalk’s	debugging	capabilities.	Switch	

back	to	Pharo	and	notice	that	a	new	window	exists	with	the	title	‘MessageNotUnderstood’.	

	

3. In	the	top	third	of	this	debugger	window	is	a	scrolling	list	of	class	and	method	names	

representing	frames	in	the	process	stack.	In	the	middle	third	we	have	a	row	of	buttons	followed	

by	a	text	area.	The	buttons	control	the	debugger	and	the	text	area	shows	us	a	method	in	a	

selected	stack	frame.	The	bottom	third	gives	us	information	on	the	receiver	and	its	instance	

variables,	and	the	context	and	its	temporary	variables.	

Chapter	5:	Exploring	some	Tools	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 4	
	

Click	the	second	line	in	the	process	stack:	‘FlightInfoComponent>>renderContentOn:’.	

	

	

Chapter	5:	Exploring	some	Tools	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 5	
	

4. At	this	point	we	can	see	the	method	is	sending	the	message	‘headerAt:’	which	is	not	

understood.	We	should	have	sent	the	message	‘heading:’	to	get	the	proper	behavior.		

If	this	were	a	typical	programming	language,	we	would	need	to	edit	a	text	file	containing	the	

source,	then	recompile	the	code,	restart	the	application,	and	apply	it	to	the	web	server.	

Smalltalk	gives	us	a	much	more	powerful	approach	to	fixing	bugs.	In	the	debugger,	edit	the	

method	so	that	‘headerAt:’	is	replaced	with	‘heading:’	and	save	the	method	(<Ctrl>+<S>).	When	

you	save	the	method	the	debugger	trims	the	stack	to	this	method	(removing	the	frames	above)	

and	starts	over	at	the	beginning	of	this	method.	

	

	You	can	click	the	‘Into’	and	‘Over’	and	‘Through’	buttons	a	few	times	to	watch	the	code	being	

executed.	You	can	also	click	on	some	of	the	lists	at	the	bottom	to	see	the	values	of	various	

variables.		

5. Once	you	have	played	a	bit	with	the	debugger,	click	the	‘Proceed’	button	(the	left-most	of	the	

buttons).	The	debugger	window	should	close	and	then	you	can	return	to	your	web	browser.	The	

web	browser	should	now	show	a	page	with	a	date,	time,	and	dollar	amount.	This	shows	that	we	

have	fixed	the	problem	introduced	above	in	step	#1.	

This	is	an	example	of	Smalltalk’s	ability	to	do	surgery	on	a	sick	patient	when	other	environments	
would	only	give	you	an	opportunity	to	do	an	autopsy	on	a	dead	patient.	

Chapter	5:	Exploring	some	Tools	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 6	
	

6. So	far	we	have	been	using	Pharo’s	System	Browser	to	edit	code.	Seaside	provides	an	alternate	

method	of	editing	code—using	the	web	browser.	To	do	this	we	first	need	to	turn	on	some	

Seaside	tools	using	the	‘Halos’	link	at	the	bottom	of	the	page.	While	we	could	do	this	in	the	

current	web	browser’s	window,	it	will	be	helpful	for	what	follows	to	keep	the	existing	page	and	

have	a	second	page	or	tab	open	on	the	tools.	How	you	do	this	will	depend	on	your	web	browser,	

but	most	modern	browsers	support	opening	a	link	in	a	new	tab	(generally	with	a	right-click	

context-sensitive	menu).	Following	shows	the	result	of	opening	‘Halos’	in	a	new	tab	(click	‘Halos’	

again	if	the	box	does	not	appear).	

	

What	Seaside	has	done	here	is	add	a	box	around	our	component	that	provides	some	

information	and	tools	(this	is	the	‘halo’).	The	halo	shows	the	component	class	name	

(FlightInfoComponent),	three	icons	(that	bring	up	a	Class	Browser,	an	Object	Editor,	and	a	CSS	

Style	Editor),	and	links	for	Render	and	for	Source).	We	will	examine	each	of	these.	

Note	that	the	‘Render’	at	the	top	right	is	bold.	This	lets	us	know	that	Seaside	is	‘rendering’	the	

generated	HTML.	Click	on	the	‘Source’	to	show	the	Source	HTML.	We	can	see	that	the	‘heading:’	

message	causes	Seaside	to	render	the	model	inside	an	<h1>	element.	

	

Click	on	the	‘Render’	to	return	to	‘render’	mode.	

Chapter	5:	Exploring	some	Tools	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 7	
	

7. Next,	click	on	the	third	icon	that	shows	a	tool	over	three	colored	circles.	This	changes	the	page	

to	a	CSS	Style	editor.	Enter	‘h1	{	background:	grey;	}’	in	the	text	area	and	click	the	‘Save’	button	

at	the	bottom	(not	shown	here).	

	

8. 	Now	switch	to	the	page	(tab	or	window)	with	the	original	application	and	refresh.	You	should	

see	a	new	background	on	the	<h1>	element.	

	

Depending	on	your	environment,	the	grey	might	not	show	up	well.	If	you	don’t	see	any	change,	

go	back	to	step	#7	and	try	‘red’	or	‘yellow’.	

Chapter	5:	Exploring	some	Tools	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 8	
	

9. Return	to	Pharo	and	click	on	‘FlightInfoComponent’	in	the	System	Browser,	then	on	‘style’	in	the	

method	list.	You	can	see	that	Seaside	has	added	a	method	to	your	component	that	provides	CSS	

information.		

	

10. To	reduce	future	confusion,	edit	this	method	so	that	the	background	for	h1	is	‘white’.	

11. The	next	tool	to	explore	is	the	Object	Inspector.	Return	to	the	CSS	Style	Editor	page	in	your	web	
browser,	and	click	the	‘X’	in	the	top	right	of	the	page.	

	

This	should	return	you	to	the	page	shown	above	in	step	#6.	

Chapter	5:	Exploring	some	Tools	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 9	
	

12. In	the	halos,	the	middle	icon	is	a	magnifying	glass	over	a	page.	Click	on	that	icon	to	open	an	

Object	Inspector.	

	

13. In	this	Inspector	you	are	first	shown	an	inspector	on	the	instance	of	FlightInfoComponent	being	

presented	by	Seaside.	Recall	that	we	defined	the	class	with	one	instance	variable,	‘model.’	What	

we	didn’t	notice	is	that	one	of	our	superclasses	defined	another	instance	variable,	‘decoration.’	

Click	on	the	‘model’	link	to	inspect	the	instance	of	FlightInfo	and	see	its	instance	variables.	

	

14. In	web	browser,	in	the	text	area	below	price,	type	the	following	and	click	the	‘do	it’	button.	

self addHours: 2.

Notice	how	this	changes	the	time	(and	the	price,	since	the	‘addHours:’	method	calls	

‘calculatePrice’).	

Chapter	5:	Exploring	some	Tools	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 10	
	

15. Again,	in	the	text	area,	type	the	following	and	click	on	the	‘inspect	it’	button.	This	will	show	you	
an	inspector	on	4.0,	an	instance	of	Float.	From	this	we	can	see	that	we	essentially	have	a	

Workspace	available	through	the	web.	

16 sqrt.

When	you	are	done	inspecting	objects,	click	the	‘X’	in	the	top	right	to	close	the	Object	Inspector.	

This	should	return	you	to	the	halos	shown	in	step	#6.	

16. The	final	tool	available	from	the	halos	is	a	Class	Browser.	Click	on	the	first	icon	showing	a	spiral	

bound	notepad	with	a	pencil	over	it.	This	will	open	a	Class	Browser	that	should	look	a	lot	like	the	

System	Browser	in	Pharo.	We	can	use	this	browser	(as	an	alternative	to	Pharo’s	System	Browser)	

to	add	a	few	methods	to	our	application	component.	

	

17. At	this	point	our	application	simply	initializes	a	model	and	displays	it.	By	itself,	this	isn’t	a	very	

sophisticated	application	and	doesn’t	demonstrate	much	HTML	functionality.	The	simplest	

addition	that	actually	interacts	with	the	data	is	a	link.	We	will	modify	the	render	method	to	add	

an	anchor,	give	it	some	code	to	execute	when	the	link	is	clicked,	and	give	it	some	text	to	display.	

In	the	web	browser	Pharo,	click	on	‘renderContentOn:’	in	the	last	column	and	edit	the	text	to	

match	the	following	and	click	the	‘Accept’	button.	

renderContentOn: html

 html heading: model.
 html anchor
 callback: [model addHours: -30];
 with: '<- Earlier'.

Chapter	5:	Exploring	some	Tools	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 11	
	

The	added	lines	send	one	unary	message	(‘anchor’)	and	two	keyword	messages	(‘callback:’	and	

‘with:’).	As	discussed	in	more	detail	below	(at	step	#18),	the	‘addHours:’	message	will	not	be	

sent	when	this	method	is	called.	We	have	seen	a	message	cascade	before	(in	chapter	3),	so	we	

know	that	the	receiver	of	the	‘with:’	message	is	the	same	as	the	receiver	of	the	‘callback:’	

message.	So	which	object	is	the	receiver	of	the	‘callback:’	message?	Since	unary	messages	take	

precedence	over	keyword	messages,	the	‘anchor’	message	will	be	sent	to	the	passed-in	html,	

and	an	object	will	be	returned.	The	object	is	an	instance	of	WAAnchorTag,	a	Seaside	class	that	

represents	the	<a>	element	in	an	HTML	document.	

The	use	of	the	cascade	syntax	here	is	important.	We	want	to	create	one	anchor	and	send	it	two	

messages.	If	we	had	written	the	code	without	the	cascade,	we	might	have	been	tempted	to	do	

the	following:	

 html heading: model.
 html anchor callback: [model addHours: -30].
 html anchor with: '<- Earlier'. “WRONG!”

This	code	would	have	created	two	anchors	and	sent	the	‘callback:’	message	to	one	and	the	

‘with:’	message	to	the	other.	This	is	not	what	we	want!	The	correct	way	to	do	this	(without	using	

the	cascade)	would	be	to	use	a	temporary	variable,	but	it	is	more	complex	than	the	cascade	

approach.	This,	then,	is	an	example	of	where	the	cascade	makes	the	code	simpler	and	more	

readable.	

 | myAnchor |
 html heading: model.
 myAnchor := html anchor.
 myAnchor callback: [model addHours: -30].
 myAnchor with: '<- Earlier'.

Now,	let’s	discuss	the	two	keyword	messages	sent	to	the	new	anchor.	The	simpler	one	comes	

last.	The	‘with:’	message	is	being	sent	to	the	anchor	tag	with	a	single	argument.	The	argument	is	

a	string	literal,	identified	in	Smalltalk	with	a	straight	single-quote	character	at	the	beginning	and	

end.	(If	you	need	to	insert	a	one	single	quote	inside	a	string	literal,	put	two	in.)	In	Seaside,	the	

‘with:’	message	should	be	the	last	one	sent	to	a	tag	since	it	causes	the	content	to	actually	be	

written	to	the	HTML	page.	(Since	it	must	be	last,	I	don’t	use	the	‘yourself’	at	the	end.)	

18. The	‘callback:’	keyword	message	introduces	a	new	Smalltalk	concept—a	code	block.	In	Smalltalk,	

any	code	inside	square	brackets	([])	is	code	that	is	simply	an	object	that	can	be	passed	as	an	
argument	to	any	method	that	accepts	an	argument.	Like	any	other	object,	it	can	be	referenced	

by	variables	and	messages	can	be	sent	to	it	at	some	later	time.	Thus,	in	our	‘renderContentOn:’	

method	we	are	not	actually	sending	the	‘addHours:’	message;	instead	we	are	defining	a	block	of	

code	that	might	be	executed	later,	at	which	time	the	‘addHours:’	message	will	be	sent.	

Chapter	5:	Exploring	some	Tools	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 12	
	

A	code	block	object	knows	its	context—that	is,	the	method	in	which	it	was	defined.	It	also	knows	

the	method	arguments	and	temporaries	that	existed	at	the	time	it	was	created.	When	the	

expressions	contained	in	the	block	are	later	evaluated	(by	sending	the	message	‘value’	to	the	

block),	the	expressions	will	properly	reference	instance	variables,	method	arguments,	and	

method	temporaries.		

By	sending	a	code	block	to	an	anchor	tag	as	the	argument	to	a	‘callback:’	message,	we	are	telling	

the	anchor	tag	to	hold	onto	this	block,	and	when	a	user	clicks	on	the	anchor	on	the	web	page,	

Seaside	will	send	the	‘value’	message	to	the	code	block,	which	will	send	the	‘addHours:’	

message	to	the	page’s	model	with	the	argument	of	negative	30.		

These	Anonymous	Functions	(see	http://en.wikipedia.org/wiki/Anonymous_function)	give	

Smalltalk	much	of	its	power	and	flexibility.	You	might	be	familiar	with	some	related	approaches	

in	other	languages	(JavaScript,	Perl,	Ruby,	and	of	course	Lisp	have	similar	concepts).	In	C	you	can	

pass	a	pointer	to	a	function	as	an	argument	to	a	function	and	in	Java	you	can	define	inner	

classes,	though	these	don’t	have	the	full	capabilities	of	Smalltalk’s	blocks.		

19. After	saving	the	changes	to	the	‘renderContentOn:’	method,	go	back	to	your	web	browser	and	

refresh	the	page.	You	should	see	a	link	below	the	heading	and	clicking	on	the	link	should	cause	

the	information	to	change.	

	

Chapter	5:	Exploring	some	Tools	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 13	
	

20. Next	we	will	add	a	link	to	move	to	a	later	time.	This	time	rather	than	doing	the	call	directly	in	the	

block,	we	will	call	a	local	method	that	updates	the	model.	Add	the	method	‘later’	to	

FlightInfoComponent,	and	then	modify	the	‘renderContentOn:’	method	to	call	this	new	method.	

(These	edits	can	be	made	from	Pharo	or	from	a	web	browser.)	In	this	case	we	still	have	a	code	

block	being	passed	to	the	new	anchor	tag,	but	the	code	block	calls	a	local	method	that	sends	a	

message	to	the	model.		

Which	approach	you	take	is	a	matter	of	style	and	will	generally	be	driven	by	the	complexity	of	

the	callback	operation.	If	you	have	any	more	that	one	message	send,	then	the	code	should	

probably	be	put	in	its	own	method.	A	code	block	can	be	many	lines	long,	but	that	would	only	

clutter	the	‘renderContentOn:’	method,	which	is	already	several	lines	long!	In	Smalltalk	it	is	

considered	poor	form	to	have	a	method	longer	than	you	can	read	in	the	code	browser	without	

scrolling,	or	about	6-8	lines	long.	

later

 model addHours: 30.

	

renderContentOn: html

 html heading: model.
 html anchor
 callback: [model addHours: -30];
 with: '<- Earlier'.
 html space.
 html anchor
 callback: [self later];
 with: 'Later ->'.

21. Try	out	the	new	page	in	your	web	browser.	Click	the	links	and	note	how	the	data	changes.	

	

22. Save	your	Pharo	image	before	we	go	on	to	explore	some	other	aspects	of	Seaside.	

