
Chapter	4:	Associating	Domain	Objects	with	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 1	
	

At	this	point	we	are	going	to	start	building	a	simple	application	to	demonstrate	some	basic	Seaside	
functionality	and	introduce	you	to	more	Smalltalk	and	Pharo	as	we	go	along.	The	application	will	
simulate	a	trivial	airline	reservation	system	in	which	you	find	and	select	a	flight.	Instead	of	starting	with	
a	user	interface,	we	will	start	with	a	domain	model	that	holds	a	date/time	and	price.		

1. Start	the	Seaside	One-Click	Experience	and	in	the	System	Browser	click	on	‘GLASS’	in	the	first	
column	to	get	a	new	class-creation	template.	Edit	the	template	to	match	the	following	and	save	
the	text.	

Object subclass: #FlightInfo
 instanceVariableNames: 'when price'
 classVariableNames: ''
 category: 'GLASS'

This	creates	a	new	subclass	of	Object	named	‘FlightInfo,’	gives	it	two	instance	variables	(‘when’	
and	‘price’),	and	puts	it	in	the	‘GLASS’	category.		

2. Next	we	will	define	a	couple	‘accessor’	(or	‘getter’)	methods	that	simply	return	the	value	of	the	
instance	variable.	(The	method	return	is	signaled	by	the	up	arrow	or	caret	at	the	beginning	of	an	
expression.)	These	methods	are	necessary	because	in	proper	Smalltalk	there	is	no	direct	
structural	access	to	the	instance	variables	(or	properties	or	fields)	of	an	object.	This	language	
design	enforces	encapsulation	and	allows	the	implementation	of	an	object	to	change	(perhaps	
the	‘price’	is	calculated	every	time	it	is	requested	rather	than	saved	with	the	object).	Note	that	
these	are	two	separate	methods.		

To	get	to	a	method	creation	template,	click	on	‘GLASS’	in	the	first	column,	click	on	‘FlightInfo’	in	
the	second	column,	click	on	‘--	all	--‘	in	the	third	column,	click	in	the	text	area	at	the	bottom	of	
the	system	browser,	and	finally	select	all	using	<Ctrl>+<A>	(or	click	in	the	text	area	after	the	end	
of	the	last	line).	Enter	the	first	method	(three	lines),	save	(using	<Ctrl>+<S>),	and	then	select	all,	
delete,	and	enter	the	second	method	(three	lines),	and	save.	

price

 ^price.

	

when

 ^when.

	

Chapter	4:	Associating	Domain	Objects	with	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 2	
	

3. Next	we	will	add	a	method	to	calculate	the	price.	(Of	course,	this	calculation	is	purely	arbitrary	
and	used	in	this	tutorial	to	give	an	example	of	some	further	Smalltalk	syntax.)	This	method	has	a	
temporary	variable	(hours)	that	is	declared	in	line	3	(within	the	vertical	bar	characters)	and	set	
in	line	4	with	the	assignment	operator	(recall	that	Smalltalk	uses	colon-equals	which	leaves	plain	
equals	available	for	comparison).	When	you	enter	the	code,	you	may	leave	out	the	line	number	
comments	(or	leave	them	it	if	you	want!).	

calculatePrice

"3" | hours |
"4" hours := when asSeconds // 3600.
"5" price := (hours degreeSin asScaledDecimal: 2) * 30 + 300.

This	is	the	first	time	we	have	seen	multiple	messages	in	an	expression	and	it	calls	for	some	
explanation.	In	Smalltalk,	the	three	message	types	(unary,	binary,	and	keyword)	have	
precedence	such	that	all	unary	messages	are	evaluated	in	left-to-right	order	before	any	other	
messages	are	evaluated.	Thus,	the	‘asSeconds’	message	is	sent	to	the	object	in	the	‘when’	
instance	variable	and	the	‘asSeconds’	method	in	DateAndTime	returns	an	object	(we	know	it	is	
an	Integer).	Now	that	we	have	evaluated	all	the	unary	messages	in	the	expression,	we	move	to	
the	binary	messages	(the	next	level	of	precedence)	and	evaluate	them	in	left	to	right	order.	The	
expression	on	line	4	has	only	one	binary	message,	the	integer	divide	message	(//).	By	taking	an	
integer	that	represents	seconds	and	dividing	by	3600	and	ignoring	the	fractional	portion,	we	get	
an	integer	that	represents	hours.	Note	that	the	‘//’	message	is	simply	a	message	that	is	
understood	by	instances	of	Number	(a	superclass	of	Integer).	

Line	5	is	an	even	more	complex	expression.	In	expression	evaluation,	precedence	is	always	given	
to	parenthesis	so	we	start	with	the	subexpression	in	the	parenthesis.	The	parenthesis	pair	
contains	two	messages,	‘degreesSin’	(a	unary	message)	and	‘asScaledDecimal:’	(a	keyword	
message).	Since	unary	messages	are	evaluated	before	keyword	messages,	we	first	send	the	
message	‘degreesSin’	to	the	receiver	‘hours’	(an	Integer	we	got	from	line	4).	The	object	returned	
by	the	‘degreesSin’	method	is	an	instance	of	Float	(that	will	be	in	the	range	of	-1	to	+1).	Next	we	
send	the	message	‘asScaledDecimal:’	to	the	instance	of	Float	to	convert	it	to	a	number	that	
shows	two	digits	past	the	decimal	point.	This	completes	the	expression	in	the	parenthesis.	

After	evaluating	the	expression	in	the	parenthesis,	we	have	three	objects	(an	instance	of	
ScaledDecimal	and	two	SmallIntegers)	and	two	binary	messages	(‘*’	and	‘+’).	Evaluating	them	
left-to-right,	we	send	the	‘*’	message	to	the	ScaledDecimal	with	an	argument	of	’30.’	The	
method	that	responds	to	the	‘*’	message	in	ScaledDecimal	returns	another	ScaledDecimal	
instance	representing	the	number	obtained	from	the	multiplication	by	30.	This	object	is	sent	the	
‘+’	message	with	the	argument	of	‘300’	and	returns	another	ScaledDecimal	that	will	happen	to	
be	in	the	range	of	270	to	330.	A	reference	to	this	object	is	placed	in	the	‘price’	instance	variable	
for	the	receiver	(an	instance	of	FlightInfo).	(You	might	wish	to	explore	the	impact	of	left-to-right	
evaluation	of	binary	operators	by	trying	2	+	3	*	4	in	a	workspace.)	

	

Chapter	4:	Associating	Domain	Objects	with	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 3	
	

4. Now	we	will	add	a	couple	methods	that	set	the	‘when’	instance	variable	and,	as	a	side-effect,	
recalculate	the	price.	

when: aDateAndTime

 when := aDateAndTime.
 self calculatePrice.

	

addHours: anInteger

 when := when + (Duration hours: anInteger).
 self calculatePrice.

5. Next,	add	a	method	to	print	the	object	on	a	stream.	This	is	used	to	create	a	text	representation	
of	the	object.	This	method	is	a	common	one	in	classes,	and	can	be	particularly	helpful	for	
debugging.	

printOn: aStream

 when printYMDOn: aStream.
 aStream space.
 when printHMSOn: aStream.
 aStream skip: -3.
 aStream nextPutAll: ' $'.
 price printOn: aStream.
 aStream skip: -2.

6. Finally,	add	a	method	to	initialize	the	object.	In	Pharo,	the	‘initialize’	method	is	called	on	all	
newly-created	objects	to	give	them	a	chance	to	give	their	instance	variables	initial	values.		

initialize

 when := DateAndTime noon + (Duration days: 5).
 self calculatePrice.

Some	Smalltalk	dialects	(such	as	GemStone)	do	not	do	the	automatic	initialize	but	instead	leave	
it	up	to	the	programmer	to	override	‘new’	on	the	class	side	to	call	‘initialize’	if	instances	of	the	
class	require	it.	If	you	are	writing	an	application	that	might	be	ported	from	one	dialect	of	
Smalltalk	to	another,	you	can	minimize	these	differences	by	subclassing	your	domain	objects	
from	GRObject.	GRObject	is	provided	by	Grease,	a	package	designed	to	make	porting	easier.	

Chapter	4:	Associating	Domain	Objects	with	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 4	
	

7. At	this	point	the	System	Browser	should	show	seven	methods.	The	‘initialize’	and	‘printOn:’	
methods	have	a	green	arrow	pointing	up	to	signify	that	your	method	overrides	a	superclass	
implementation	of	the	same	name.	

	

8. Now	that	we	have	our	domain	object	defined	we	are	ready	to	create	a	user-interface	class.	In	
Seaside,	the	basic	user	interface	class	is	a	subclass	of	WAComponent	and	any	such	component	
can	be	a	root	(the	starting	point	for	an	application).	In	the	System	Browser,	click	on	‘GLASS’	in	
the	first	column	to	get	a	new	class-creation	template.	Define	the	new	class	as	follows:	

WAComponent subclass: #FlightInfoComponent
 instanceVariableNames: 'model'
 classVariableNames: ''
 category: 'GLASS'

9. Perhaps	the	most	important	method	in	a	Seaside	component	is	‘renderContentOn:’	that	creates	
the	HTML.	For	starters,	just	to	demonstrate	that	we	have	properly	created	things,	we	will	
provide	a	trivial	implementation.	Click	in	the	third	column	to	get	a	method	creation	template.	

renderContentOn: html

 html heading: DateAndTime now.

Chapter	4:	Associating	Domain	Objects	with	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 5	
	

10. Now	we	need	to	inform	Seaside	that	this	new	component	can	be	used	as	a	root	component	(this	
should	be	familiar	from	chapter	2).	In	the	Workspace,	evaluate	the	following:	

WAAdmin register: FlightInfoComponent asApplicationAt: 'FlightInfo'.

11. If	the	above	steps	were	successful,	you	should	be	able	to	open	a	web	browser	on	
http://localhost:8080/browse	and	see	‘FlightInfo’	at	the	top	of	the	list	(the	initial	uppercase	
letter	causes	the	name	to	sort	first).	

	

12. Click	on	the	‘FlightInfo’	link	and	note	that	a	timestamp	is	displayed.	Click	refresh	a	few	times	and	
note	that	the	time	changes.		

13. Instead	of	displaying	the	current	date/time,	we	really	want	to	display	our	domain	model	object,	
an	instance	of	the	‘FlightInfo’	class.	In	order	to	create	a	new	instance	of	our	model,	override	the	
‘initialize’	method	in	FlightInfoComponent.	This	method	is	called	whenever	a	new	application	
object	is	instantiated	by	Seaside	in	response	to	a	request	for	the	root	page	of	the	application.	

initialize

 super initialize.
 model := FlightInfo new.

The	System	Browser	should	now	show	two	methods	for	the	FlightInfoComponent	class,	
‘initialize’	and	‘renderContentOn:’.	The	initialize	method	also	has	a	green	up-arrow	next	to	it	to	
alert	you	to	the	fact	that	this	method	overrides	a	superclass	method	of	the	same	name.	

14. Now	we	will	modify	our	‘renderContentOn:’	methods	as	follows	(the	modified	line	is	in	bold).	
This	is	intended	to	cause	the	model	to	be	displayed	using	its	‘printOn:’	method.		

renderContentOn: html

 html heading: model.

15. Return	to	your	web	browser	and	click	the	<Refresh>	button.	You	should	now	see	a	date/time	
and	price.	

	

Chapter	4:	Associating	Domain	Objects	with	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 6	
	

16. Most	web	pages	provide	a	title	that	is	used	for	the	window	title	and	(if	the	browser	supports	it)	
the	tab	title.	By	default	all	Seaside	pages	have	the	title	‘Seaside’	(as	you	can	see	above)	which	
we	would	like	to	change.	In	the	System	Browser,	add	a	new	method	to	FlightInfoComponent:	

updateRoot: anHtmlRoot

 super updateRoot: anHtmlRoot.
 anHtmlRoot title: 'Flight Information'.

17. Refresh	your	web	browser	and	note	that	the	window	title	and	tab	heading	have	changed.	

	

18. Save	your	image.	

While	not	much	more	sophisticated	than	the	“Hello	World!”	example	in	Chapter	3,	we	will	continue	to	
use	this	application	to	investigate	other	aspects	of	Smalltalk,	Pharo,	and	Seaside	in	subsequent	chapters.	
An	important	point	here	is	how	Seaside	generates	web	pages—completely	through	Smalltalk	code.	This	
is	a	contrast	to	the	template	approach	used	by	most	web	frameworks.		

	

Web	Frameworks	

A	web	application	receives	a	request	from	a	web	server	and	is	expected	to	generate	an	appropriate	
response—generally	a	document	formatted	using	the	Hyper-Text	Markup	Language	(HTML)—and	pass	it	
back	to	the	web	server	to	be	sent	to	the	client	browser.	An	early	approach	that	remains	popular	among	
web	frameworks	is	to	create	a	document	that	looks	like	HTML	(the	template)	but	has	some	additional	
elements	(defined	with	special	tags)	used	to	specify	additional	content.	For	example,	most	web	sites	
have	a	common	footer	that	includes	a	copyright	notice.	Rather	than	hard-coding	the	same	footer	in	each	
page,	one	can	reference	(or	include)	a	second	file	at	a	particular	point	in	the	first	file	and	the	current	
contents	of	the	second	file	will	replace	the	include	directive	in	the	first	file.	This	makes	the	first	file	less	
cluttered	and	allows	changes	to	the	footer	to	be	made	more	easily	and	consistently.	

An	example	of	this	approach	is	the	include	directive	in	Java	Server	Pages	(JSP):	

<%@ include file="footer.jspf" %>

In	JSP,	included	files	generally	have	the	extension	"jspf"	(for	JSP	Fragment).	A	similar	example	can	be	
found	in	ColdFusion	(a	commercial	product	from	Adobe):	

<cfinclude template="footer.cfm">

Chapter	4:	Associating	Domain	Objects	with	Components	 	 	
	

5-Sep-16	 Copyright	©	2016	by	GemTalk	Systems	LLC	 7	
	

The	extension	".cfm"	identifies	a	CFML	(ColdFusion	Markup	Language)	document.	In	addition	to	an	
include	directive,	templating	systems	generally	provide	ways	of	evaluating	expressions	and	using	the	
result	in	the	generated	page.		

For	example,	a	CFML	page	containing	the	following	element	would	have	the	text	between	the	hash	
characters	(#)	replaced	when	the	page	is	requested:	

This page generated at <cfoutput>#Now()#</cfoutput>

A	similar	example	in	JSP	would	look	like	the	following:	

This page generated at <%= new java.util.Date() %>

Embedding	programming	logic	in	HTML	is	not	too	difficult	for	a	relatively	simple	web	site	but	does	not	
scale	well	to	a	complex	application	where	if/then/else	and	loops	are	needed.	

In	contrast	to	the	templating	approach	where	the	program	is	embedded	in	what	is	otherwise	an	HTML	
document,	some	web	frameworks	embed	or	create	HTML	in	what	otherwise	looks	like	a	traditional	
program.	A	truly	simplistic	example	of	this	approach	in	Perl	comes	from	
http://inconnu.isu.edu/~ink/perl_cgi/lesson1/hello_world.html.	Obviously,	this	is	an	impractical	
approach,	but	it	gives	you	an	idea	of	the	other	extreme.	

 #!/usr/bin/perl
 print "Content-type: text/html\r\n\r\n";
 print "<HTML>\n";
 print "<HEAD><TITLE>Hello World!</TITLE></HEAD>\n";
 print "<BODY>\n";
 print "<H2>Hello World!</H2>\n";
 print "</BODY>\n";
 print "</HTML>\n";
 exit (0);

Seaside	is	a	web	framework	in	which	the	HTML	is	generated	using	regular	Smalltalk	programming.	The	
power	of	Smalltalk	comes	from	its	ability	to	represent	complex	domain	models	as	a	rich	interaction	of	
simpler	objects.	

